Рак как метаболическая болезнь

Print Friendly, PDF & Email

Рак – это в основном метаболическая болезнь, включающая в себя дисбаланс производства энергии с помощью дыхания и ферментации. Есть 2 подхода к онкологии: как к генетическому заболеванию и как к метаболическому заболеванию. Первый вариант из-за огромного количества переменных очень сложен, второй дает ясную картинку происходящего во всех раковых клетках вне зависимости от их вида.

Томас Сейфрид с коллегами умело замечает, что «невозможность ясно определить происхождение рака во многом предопределяет невозможность значительно уменьшить количество смертей от болезни» [1, 2]. Данные ВОЗ и американской CDC подтверждают этот тренд цифр: распространенность заболевания в целом растёт, смертность незначительно падает [8, 9].

При «генетической» трактовке рак получается генетической соматической болезнью, где повреждение клеточной ДНК предшествует трансформации нормальной клетки в потенциально смертельную раковую. Абнормально выраженные онко-гены, подавленные гены, связанные с подавлением опухолей, – драйверы последних десятилетий исследований заболевания. Миллионы генов, связанных заболеванием, привели ученых к выводу, что это не одно заболевание, а группа различных болезней. В подобной парадигме будущее лечение – индивидуальные терапии, «сшитие» с учетом генетических особенностей и конкретного вида опухоли пациента.

рак

Генетический подход справедливо критикуют (рис 1). Роль ядра и митохондрий в образовании опухолей. Рисунок выше суммирует экспериментальные доказательства, говорящие о лидирующей роли митохондрий в онкогенезе. 1) Нормальные клетки порождают нормальные клетки. 2) Раковые клетки порождают раковые 3) Нормальные клетки, куда поместили ядро из раковых клеток, продолжают порождать нормальные клетки, не смотря на наличие онкогенных генетический аномалий. 4) Раковые клетки, куда помещают нормально ядро, продолжают порождать раковые клетки.

Это говорит о том, что рак связан с дефектами цитоплазы, а не только с генетикой.

Рак и Отто Варбург

Отто Варбург – лауреат нобелевской премии 1931 года, 47-ми кратный номинант этой премии, один из самых видных цитологов 20-го века. Варбург первым предположил, что рак начинается с дисфункционального клеточного дыхания.

Суммируя идеи Варбурга:

  • Недостаточное [клеточное] дыхание инициирует онкогенез и в итоге рак;
  • Энергия от гликолиза постепенно компенсирует недостаточность энергии от дыхания;
  • Раковые клетки продолжают ферментировать лактат в присутствии кислорода;
  • Дыхательная недостаточность [клетки] со временем становится необратимой.

Ферментирование глюкозы в присутствии кислорода с производством избытка лактата – «эффект Варбурга», общепринятые индикаторы раковых клеток.

Напомню, после заметной анаэробной нагрузки, при восстановлении уровня кислорода в мышце, уровень лактата значительно снижается. Что в контексте моей заметки говорит о том, что лактат – признак энергетического кризиса в клетке и питает ее, пока полноценное окислительное фосфорилирование (OxPhos далее) не доступно.

Рак и митохондрии

Структура митохондрий тесно связана с их функцией. У раковых клеток проблемы как с количеством, так и со структурой митохондрий.

Слева на рисунке выше вы видите нормальную митохондрию. Вы отчетливо видите кристы, на которых находятся белковые комплексы дыхательной цепи, ответственные за создание АТФ. Справа митохондрия глиобластомы. Отсутствие крист говорит о том, что OxPhos раковой клетки подавлено. Митохондрия справа увеличена в размерах (swelling), что является признаком патологии органеллы.

Окислительное фосфорилирование [дыхательная функция] подавлена в раковых клетках с малочисленными и дефектными митохондриями. Гликолиз и ферментация лактата значительно активируются в раковых клетках, чтобы компенсировать отсутствие OxPhos.

Следующий вклад в доказательство того, что у онкоголических клеток дефектные митохондрии внес Питер Педерсен.

Суммируя выводы профильных экспериментов Педерсена:

  1. Митохондрии раковых клеток обладают ненормальной морфологией и по-другому реагируют на изменения в питательных веществах, отлично от обычных клеток;
  2. Композиция белков и жиров заметно отличается в митохондриях рака;
  • Утечка протонов (proton leak) и разобщение (uncoupling) выше в митохондриях онкоклеток;
  1. Обмен кальция нарушен в митохондриях опухолей;
  2. Мембранные транспорт анионов нарушен и дерегулирован в митохондриях многих опухолей;
  3. Дефектная «шаттловая» система не ответственна за повышенный уровень ферментации глюкозы раковых клеток;
  • Пируват эффективно не окисляется в митохондриях опухолей;
  • Митохондрии опухолей содержат гексокиназу 2B [подробнее про этот фермент – 10];
  1. Недостаточность дыхательной функции приводит к аккумуляции лактата.

Структура, функция и дыхание митохондрий дефектные в том или ином виде во всех раковых клетках. Почти у всех раковых клеток наблюдаются дефекты дыхательной цепи переноса электронов.

Сейфрид с коллегами уделяют почти страницу текста критике на критику своих взглядов. В частности, на выращивание in vitro онкоклеток со «здоровыми» митохондриями. Проблема в том, что без более или менее функционирующих митохондрий «в пробирке» клетку рака не вырастить.

Рак и дефектные митохондрии

Рисунок 3. Недостаток митохондриальной функции как источник рака. Рак может начаться из-за любых неспецифичных событий, которые со временем повреждают дыхательную функцию клеток. Канцерогенез произойдет только в клетках способных нарастить производство энергии при помощи ферментации (substrate level phosphorylation, SLP). Не смотря на сдвиг от дыхания к ферментации, гидролиз АТФ остается прежним (-56 кДж), так как ферментация компенсируют дефекты дыхания. Митохондриальный стресс активирует онкогены и подавит противораковые гены – это необходимо для поддержания жизни зарождающихся раковых клеток, когда дыхания уже недостаточно для поддержания гомеостаза. Нестабильность генома будет последствием затянувшегося стресса митохондрий, вызванного нарушениями внутреннего и внешнего микроокружения. Метастазы начинаются из-за «дыхательного» урона миелоидным клеткам и макрофагам. Степень злокачественности напрямую связана с переходом от OxPhos к ферментации. Этот сценарий связывает все основные признаки рака с внехромосомными нарушениями дыхательной функции митохондрий. «Т» на графике – произвольная точка невозврата, когда переход к ферментации становится необратимым.

Любое неспецифичный процесс, который повреждает дыхательную способность клетки, может (may or may not) инициировать путь к злокачественной опухоли. Снижение дыхательной функции может быть обусловлено уроном митохондриальным белкам, жирам, мтДНК. Например, воспаление, канцерогены, радиация (ионизирующее или ультрафиолетовое), гипоксия, редкие мутации, вирусные инфекции, возраст.

При сильном уроне – клетка умрёт. При слабом клетка может активировать ферментацию, чтобы компенсировать недостаточную дыхательную функцию.

Необузданная пролиферация связана с ферментацией, которая была доминирующей формой энергетического метаболизма во временя дефицита кислорода ранней истории Земли. Недостаточность OxPhos в гибридах (fusion) иммунных клеток и стволовых раковых клеток может предшествовать способности раковых клеток попадать с кровоснабжением в другие части организма и распространяться локально. Последнее по мнению Сефрида и коллег объясняет метастазы.

Рак, мутации p53 и Ras генов и митохондрии

Ras – онкоген, p53 – противоопухолевый ген. Сефрид с коллегами умело аргументирует, что дефекты p53 гена связаны с дефектами дыхательной функции митохондрий. Дефекты этого гена можно рассматривать как вторичные по отношению к дыхательной функции. Тоже самое можно сказать и про Ras-гены

Рисунок 4. Временная шкала процессов после экспрессии Ras-онкогена. По тайм-лайну видно, что ферментация и онкогенез начинают с того, что Ras нарушает нормальную дыхательную функцию. Это на данных in vitro, in vivo таймлайн будет значительно более растянутым.

И деактивация p53 и активация Ras имеют негативный эффект с точки зрения развития онкологической патологии именно за счет подавления дыхательной функции митохондрий. На рисунке ниже из исследования [4] это наглядно видно.

Постоянный ретроградный стрессовый сигнал от митохондрий приводит к аномалиям механизма починки ДНК. Для кальциевого и анионного гомеостаза также нужна полноценная дыхательная функция.

В эволюционном контексте метаболический взгляд на рак больше соответствует эволюции по Ламарку, чем по Дарвину. У Дарвина соматические мутации являются драйверами болезней. А в эволюционной теории Ламарка окружающая среда приводит к изменению в биологических структурах. Посредством адаптации и дифференциальному использованию [своих функций] организмы могут модифицировать свои структуры. Современными словами эволюция Дарвина больше о «генетике» (в кавычках, так как Мендель был уже после Дарвина), а Ламарк об эпигенетике. Дисфункция [митохондрий] в таком случае может быть распространена соматически (по организму) через клеточное наследование или передаться детям.

Рак и кетогенная диета

Кетогенная диета – это высоко жировая и низко-углеводная диета, во время которой уровень глюкозы снижается, а уровень кетонов в крови расти. Выработка АТФ происходит за счет бета-оксидации жиров и кетоновых тел в первую очередь бета-гидроксибутирата (BOHB). С функциональной точки зрения кето-диета – это частичная имитация эффектов голодания без ограничения в еде и значимой катаболической части процессов голодания.

Как видите, кето в значительной мере «качает» чашу метаболизма в сторону окисления жиров и подавления гликолиза, что действует на рак как метаболический стресс. В целом оппуртунистические клетки рака выживают, когда субстрат для ферментации в изобилии.

Взаимоотношения концентрации глюкозы и кетонов (бета-гидроксибутирата) от отношению к росту опухоли. Значения глюкозы и кетонов находятся в физиологических значениях и способствуют антиангиогенному, противовоспалительному и про-апоптотическому (смертельному) эффекту в рамках опухоли. Это состояние на рисунке отмечено как «managed growth». Уровень глюкозы в крови – один из факторов прогноза развития опухоли. Указанный уровень кетонов значительно ниже уровня, который бывает при кетоацидозе (15+ ммоль). Повышенный уровень кетонов защищает мозг от гипогликемии.

Некоторые препараты химиотерапии (например, иматиниб, трастузумаб) воздействуют на метаболизм глюкозы. По отношению к этим препаратам кето является нетоксичной метаболической терапией.

Сейфрид с коллегами пишет о важности ограничения калорий во время кето-диеты. Бесконтрольное потребление пищи на кето может привести к скачкам инсулина и глюкозы вне зависимости от присутствия углеводов в пище. На кето, как правило, сложно переесть из-за большого процента жира в диете и подавления чувства голода.

Рак, кето и гипербарическая оксигенация (ГБО) [2, 11]

Кето и ГБО синергично подавляют рак в метастатической стадии. Клетки рака (VM-M3/Fluc) вживили мышам подкожно и в системные органы. Метастазы оценивали ex vivo при помощи биолюминисценции. Рост опухоли был ниже в кето-группе, чем в группе с обычной углеводной диетой. A) Животные каждой группы лечения через 21 день после вживления опухоли: синергия гипербарической оксигенации и кето-диеты дала наилучший эффект из представленных. B) Биолюминисценция опухоли измерялась на еженедельной основе. C и D) Биолюминисценция опухоли в отдельных органах. Комбинированная терапия смогла уменьшить вред опухоли внутренним органам.

Подобная комбинированная терапия повышает количество реактивных видов кислорода в раковых клетках (как и кето, как и радиация, как и химеотерапия). Комбо кето + ГБО эффективно на примере выше подавляло рост раковой опухоли и не было токсично для организма.

Исследователи описывают подобную стратегию как Press-Pulse. Кето – это постоянно метаболическое давление на раковые клетки (press), ГБО или лекарства действуют на рак как уничтожающий “pulse”. Лекарства: 2-деоксиглюкоза, 3-бромопируват, дихлороацетат. Подобные терапии могут не только остановить рак, но и улучшить здоровье в целом.

Выводы:

  • Рак можно рассматривать как метаболическую болезнь, ключ к которой дисфункция дыхательной функции митохондрий и активация ферментации глюкозы и лактата для компенсации дыхательной дисфункции;
  • Кетогенная диета создает постоянный метаболический стресс для раковой опухоли, так как мешает ферментации глюкозы, повышает уровень реактивных видов кислорода и склоняет метаболизм к бета-оксидации;
  • Синергия некоторых нетоксичных видов терапии, например, кетогенной диеты и гипербарической оксигенации может

P.S. Рак и апоптоз

Я намеренно не размывал фокус заметки, центром которой является митохондрия в раковых клетках. Апоптоз – это клеточная смерть, ему посвящена статья Судьба хуже смерти: апоптоз как онкогенный процесс [5], которую я рекомендую (но не для всех).

Клеточная смерть, не смотря на некоторую контринтуитивность этого тезиса, может быть онкогенной. В статье рассматриваются внешние и внутренние сценарии «клеточной смерти». Затем приводятся примеры того как апоптоз стимулирует рак. Питание для соседний клеток, вакантное место для более живучих раковых клеток. Статья интересная, но с большим количеством специфической терминологии, которую я в текущей заметке про рак решил избежать. Ограничусь одним рисунком.

а) Смерть клетки может предоставить полезные для окружающих раковых клеток белковые структуры;  b) Апоптоз может освободить вакантную нишу для более жизнеспособных раковых клеток, приводя к росту опухоли и устойчивости терапии; c) Умирающие клетки рака могут высвобождать молекулы, сигнализирующие иммунной системе «найди меня», «съешь меня». Подобные сигналы могут иметь различные эффекты, стимулирующие рост опухоли.

Список источников:

  1. Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer (книга)
  2. Cancer as a metabolic disease: implications for novel therapeutics (статья)
  3. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism (статья)
  4. Mitochondria and Cancer (статья)
  5. A fate worse than death: apoptosis as an oncogenic process (статья)
  6. Otto Warburg’s contributions to current concepts of cancer metabolism (статья)
  7. Tumor Mitochondria and the Bioenergetics of Cancer Cells (монография)
  8. https://www.cdc.gov/cancer/dcpc/research/articles/cancer_2020.htm
  9. http://www.who.int/mediacentre/factsheets/fs310/en/
  10. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy
  11. The Ketogenic Diet and Hyperbaric Oxygen Therapy Prolong Survival in Mice with Systemic Metastatic Cancer
Поделиться:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *