NAD+ как основной клеточной механизм кето-диеты

Print Friendly, PDF & Email

NAD+ – это окисленная форма Никотин-амидаденин-динуклеотида (NAD), чья восстановленная версия обозначается как NADH, окисленная как NAD+. Сегодня обсудим:

  • Роль Сиртуина 1 (SIRT1), как мощнейшего регулятора метаболизма (в том числе и бета-оксидации);
  • NАD+ как способ активации SIRT1;
  • Роль кетогенной диеты в активации оси NAD+ > Sirt1 > метаболические изменения;

Сиртуин 1 – мощнейший регулятор клеточного метаболизма

Тему я аккуратно начал в заметке по миметики физической нагрузки. Разберу подробней SIRT1.

Рисунок выше, Сиртуин 1 состоит из 747 аминокислот. NLS – ядерная локализация, NES – ядерные эскпортационные сигналы, P – места фосфорилирования, S – место посттрансляционной модификации SUMO-белками.

Резюмирую выводы о структуре:

  • Белок SIRT1 может проявлять себя как в ядре, так и в цитоплазме клетки;
  • Каталитическая основа величиной в 240 аминокислот с N- и C-терминалами по всей поверхности говорят об значительном потенциале воздействия белка; Остальное разберем по ходу заметки.

SIRT1 – это NАD+ активируемая деацитилаза, действующая в ответ на сигнал недостатка нутриентов. SIRT1 запускает адаптации организма к голоду. Недостаток нутриентов – это несбалансированное соотношение АМФ/АТФ, что априори будет транслироваться повышенным соотношением NАD+/NADH.

Ядерные эффекты SIRT1 (деацетилирование целевых генов приводит к изменению их выраженности):

p53 – антиопухолевый ген, который снижает смертность от рака;

PGC-1α – который запускает процессы митохондриального биогенеза, переключения с углеводов на бета-оксидацию жиров, контролирует анаболизм жира, модулирует роль инсулина и многое другое – наш кето-проводник в контексте заметки; если которого, то стимуляция кислородного дыхания (окислительного фосфорилирования).

Ключевой механизм запуска бета-оксидации и сопутствующих адаптаций к голоду является ось: повышенное соотношение NАD+/NADH > SIRT1 > PGC-1α.

FOXO гены связаны с продолжительностью жизни, их деацетилирование увеличивает продолжительность жизни за счет адаптации к недостатку нутриентов;

CRT2С2 запускает процесс глюконеогенеза; при этом важно помнить, что глюконеогенез потребляет АТФ, что не самая лучшая долгосрочная стратегия, поэтому это саморегулирующийся процесс; Известные многим адептам кето PEPCK и G6P-гены, контролирующие глюконеогенез, активируются (и саморегулируются) осью NАD+ > SIRT1 > CRTCs

Liver C Receptor (LXR) и FOXO блокируют анаболизм жира; С анаболизма на катаболизм жира нас переключает сигнал NAD+ > SIRT1 > PGC1-α > LXP > SREBP-1

Цитозольный цели SIRT1:

AceCS-1 стимулирует расщепление ацетата до ацетил Кофермента А (субстрат для цикла Кребса);

eNOS – расширения кровеносных сосудов для улучшенной доставки нутриентов; То есть дефицит нутриент способствует доставки источников энергии в ткани;

Atgs белки – участвуют в процессе аутофагии.

Пара вещей, чтобы не растягивать заметку:

  • SIRT1 KO-мыши умирали после рождения;
  • У людей с ожирением концентрация SIRT1 снижена;
  • Посттрансляционная модификация (СУМО-илирование) SIRT1 происходит при УФ радиации или повышенной концентрации H2O2 (пероксид водорода, реактивный вид кислорода);

Промежуточный вывод: SIRT1 – ключевой [известный нам] регулятор клеточного метаболизма в ответ на недостаток нутриентов. Изменения белков митохондрий или внешнее воздействие активируют и деактивируют SIRT1, что значимо влияет на адаптацию организму к метаболическому стрессу.

Общие лейтмотивы: окисление жиров, биогенез митохондрий, долголетие, сниженная смертность от метаболических болезней.

NAD+ и кето-диета

SIRT1 активирует повышенное соотношение NAD+/NADH.

Хочу напомнить вам белковые структуры дыхательной цепи переноса электронов и путь жиров и углеводов в дыхательной цепи. В результате полной прокрутки цикла Кребса мы получаем 3 NADH, 1 FADH2. NADH начинают свой путь в Комплексе 1, FADH2 в комплексе II.

Соотношение создаваемых NADH/FADH2 у молекулы глюкозы 5:1, у жиров (в зависимости от длины) примерно 2:1. Повышенное образование NADH при метаболизме глюкозы требует восстановление NAD+. Глюкоза потребляет большее NAD+, мешая тем самым активации SIRT1 и других NAD+ зависимых белков. Глюкоза восстанавливает 111 молекул NAD+ на 1000 созданных АТФ, кетоны восстанавливают лишь 41 NAD+ на 1000 созданных АТФ.

В догонку к этому кето-диета со временем подавляет комплекс I, что как минимум не будет вредить аккумуляции NAD+.

NAD+ > SIRT1 метаболическая ось является основным механизмом действия кето-диеты.

Очевидный вывод: чтобы получить максимум «бонусов» кето-диеты надо недоедать, а совсем не нужно обжираться.

Периодическое голодание, ограничение питания по времени, некоторые фармацевтические препараты делают тоже самое – увеличивают соотношение NAD+/NADH, активируя SIRT1 и запуская каскад адаптаций, положительно сказывающихся на нашем здоровье.

NAD+: синтез, способы повышения, эффекты на здоровье

Ситуация фармакологической имитации голода звучит еще смешнее, чем имитация солнечного света, но с практической точки зрения исследователям надо как-то воздействовать на NAD+, чтобы от теории дойти до действенных рекомендаций.  Поэтому стоит рассмотреть синтез NAD+, на что мы можем влиять, и к чему это воздействие может привести.

Прекурсоры NAD+:

  • Никотинамид (NAM);
  • Никотиновая кислота (NA);
  • Триптофан (Trp);
  • Никотинамид рибосид (NR);
  • Никотинамид мононуклеотид (NMN);

NAM и NAM вместе это ниацин, витамин B3: Яйца, рыба, мясо, молочка, некоторые овощи и зерновые. Молоко источник NR. NMN есть в различной пище, в том числе брокколи, авокадо, говядина.

В еде самой по себе может быть NAD+, который расщепится до прекурсоров, которые будут затем положительно влиять на синтез NАD+. Микробиота в очередной раз говорит нам привет, потому что от нее во многом зависит усвоение NR и NMN.

С прекурсорами много вопросов. В разных тканях одни выражены сильнее других. Например, NA более стабильный прекурсор для почек, NAM для печени. И так как это активное поле исследований без четкого понимания дозировок/эффектов, но я позволю себе не говорить на тему усиления NAD+ > SIRT1 оси за счет добавок.

NAD+

Рисунок выше. Пути биосинтеза NАD+. Первый. De novo (с нуля) из триптофана. Второй Preiss-Handler pathway, также de novo. Из никотиновой кислоты. И третий. Разложение и повторное использование. Отсылаю всех к источнику [4] за большими подробностями.

Важно понимать, что NАD+ активирует не только Сиртуины. Но еще и:

  • ADP-ribosyltransferases, including poly(ADP-ribose) polymerases (PARPs);
  • cyclic ADP-ribose synthases (cADPRSs)

Одна из гипотетический стратегий поднятия NАD+ – уменьшение потребление NAD+ другими ферментами. Также можно блокировать комплекс I (метформин и другие бигуаниды) и, судя по всему, ресвератрол тоже мешает работе белковых комплексов митохондрий [5].

Но я не сторонник снижения эффективности дыхательной цепи переноса электронов, так как это может негативно сказаться, например, на мышечной массе. Потеря которой является одним из основных признаков старения.

Во время старения концентрация NАD+ снижается: за счет повышенного «спроса» организма на NАD+ и/или за счет ухудшенного синтеза. На текущий момент есть 2 признака здорового долголетия: низкое количество воспалительных процессов и недобор калорий. Ось NАD+ > SIRT1 вполне объясняет второй вариант.

В конце я хочу привести скрины исследования [4].

Известные положительные эффекты и механизмы действия NAD+ прекурсоров

NAD+ и отличительные признаки старения

Выводы

  • Ключевой клеточный механизм кето-диеты – ось NАD+ > SIRT1;
  • SIRT1 регулирует как выраженность тех или иных генов, так и процессы в цитозоле клетки: бета-оксидация жиров, анаболизм жира, глюконеогенез, биогенез митохондрий и многое-многое другое;
  • Чтобы получить все эти бонусы во время кето-диеты – надо недоедать;
  • Вне кето-диеты стратегия недоедания, периодического голодания и ограничения питания по времени дает схожий эффект;
  • Синтез NАD+ можно попытаться усилить прекурсорами, но пока это во многом terra incognita без четкого понимания принимаемого и эффектов.

Источники:

  1. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism?
  2. Targeting SIRT1 to improve metabolism: all you need is NAD+?
  3. NAD+ in aging, metabolism, and neurodegeneration
  4. NAD+ in Aging: Molecular Mechanisms and Translational Implications
  5. Effects of resveratrol on the rat brain respiratory chain
Поделиться:

Миметики физической нагрузки

Print Friendly, PDF & Email

Миметики физической нагрузки – это различные молекулы, чьи применение отчасти имитирует эффект физических упражнений.

Exercise Mimetics: Impact on Health and Performance

Вводная часть немного пересекается с заметкой про рак как метаболическую болезнь.

Физические упражнения известные своей способностью предотвращать и смягчать метаболические проблемы: диабет 2 типа, сердечно-сосудистые заболевания. Иногда нагрузка дает результат, превышающий по эффективности лекарства.

Механизм действия в данном случае – гормезис. Незначительный вред, который вызывает адаптацию организма к нагрузкам, что положительно сказывается на метаболической функции организма в целом.

Самый примечательный эффект физкультуры – биогенез митохондрий в мышцах (чтобы обеспечить их возросшую энергетическую потребность) и для аэробных нагрузок – это сдвиг метаболизма в сторону окисления жиров. Это перекликается с подходом Силуянова (и далеко не только его): гликолитическими и окислительными волокнами, где в последних значительно больше митохондрий.

Миметики физической нагрузки – это молекулы, принятие которых позволяет отчасти сымитировать подобные процессы мышечной адаптации.

Миметики могут быть полезны: людям с ограниченной подвижностью и [потенциально] для соревнующихся спортсменов.

Миметики физической нагрузки и сигналы клеточной адаптации к нагрузкам

миметики физической нагрузки

Во время упражнений мы расходуем АТФ. При переносе электрона с комплекса 1 NADH конвертируется в NAD+, что само по себе способствует насыщению клетки кислородом, а заодно и активирует метаболические стресс-сигналы. Допустим, АМФ-активируемую протеинкиназа (AMPK) и Сиртуин 1 (SIRT1), которые фосфорилируют и деацетилируют целевые белки, способствующие окислительной «трансформации» мышц. Не менее важный эффект имеют в этом процессе реактивные виды кислорода.

PCG1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) – регулятор биогенеза митохондрий и окислительного метаболизма, наиболее выражен в тканях с повышенной потребностью в энергии (мышцы (в том числе сердце), бурый жир). Физические нагрузки активируют этот белок.

Другие ко-факторы – транскрипторные подавляющие регуляторы RIP140 (receptor-interacting protein 140) и NCOR1 (nuclear receptor co-repressor 1). Во время физической нагрузки RIP140 перемещается из ядра в цитоплазму, тем самым снижая подавление транскрипции целевых генов этим белком. NCOR1 одинаково выражен как в окислительных, так и в гликолитических волокнах. Физическая нагрузка вызывает удаление NCOR1 из мышц, что способствует их «преображению». PCG1α и RIP140/ NCOR1 синергичны в своем воздействии на мышцы.

Мы получаем схему: стресс физической нагрузки – изменения ключевых белков – выраженность генов, способствующих окислительному ремоделингу мышц.

Транскрипторные факторы, влияющие на изменения мышц, PPARδ (peroxisome proliferator-activated receptor δ) и ERRα/γ ((estrogen-related receptor α/γ). PPARδ влияет на метаболизм жирных кислот. Чрезмерная выраженность этого фактора приводит к окислению жиров и митохондриальному биогенезу. Действие эстрогено-подобных рецепторов альфа и гамма подобно PPARδ.

Миметики упражнений воздействуют на те или иные белки. С картинкой и теорией закончили.

Миметики физической нагрузки. Примеры

Активаторы AMPK. Например, AICAR. AMPK – стресс-сигнал для клетки, означающий «голод». Способствует забору глюкозы клетками и запуску бета-оксидации.

Проблем с AICAR я вижу две. Очевидная – это допинг-список WADA. Второе – сигнал клеточного «голода», который противоречит анаболическим процессам (синтеза белка). В теории AICAR может мешать росту мышечной массы. Подтверждение нашлось. Activation of AMP-Activated Protein Kinase by AICAR Prevents Leucine Stimulated Protein Synthesis in Rat Skeletal Muscle. AICAR мешает лейцину стимулировать mTOR (рост мышц), и мешал росту мышц, где нагрузка имитировалась электростимуляцией.

PPARδ лиганды. Самый известный и скандальный – GW501516, на котором WADA ловила нашу Олимпийскую сборную по легкой атлетике (спортивной ходьбе). Эта молекула, действительно, заметно способствует окислению жирных кислот. Однако у этой молекулы проблемы с клиренсом (выведением) из мышц и печени, она слишком сильнодействующая, имеет свойство системно аккумулироваться – получаем действенный, но опасный препарат. PPARδ лиганды – действенный способ активировать окислительный ремоделинг мышц, но пока у нас нет безопасной молекулы, позволяющей это сделать.

SIRT1 активаторы. Ресвератрол. Замечательная молекула, бонусы для здоровья которой освещены в научной литературе. Как пример Resveratrol and exercise. Проблема, которую я вижу, это эффективная дозировка и последующая «цена курса». Эффективная дозировка у животных начиналась с 10 мг на 1 кг веса, а иногда доходила до 100 мг на 1 кг веса. Возьмем, допустим, 20 мг на 1 кг веса. Получим 1,6 грамма ресвератрола в день для мужчины 80 кг. В районе 3,5 тысяч рублей за 1 месяц употребления ресвератрола.

SIRT1 также активирует FOXO-гены, способствующие долголетию. Другие эффекты SIRT1: расширение сосудов для доставки нутриентов, генерация ацетил ко-А из ацетата (стимуляция цикла Кребса), стимуляция аутофагии, усиливает клеточной дыхание, способствует глюконеогенезу, адаптации к недостаточности нутриентов и так далее. Подробнее можно прочитать в статье Targeting SIRT1 to improve metabolism: all you need is NAD+?.

Как вы уже поняли, NAD+ (продукт переноса электронов с комплекса 1 на комплекс 3) – также способ активировать SIRT1. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Снижение концентрации NAD+ – маркер гипоксии и клеточного «старения». Молекула в том числе способствует митофагии (аутофагии поврежденных митохондрий).

К NAD+ я вернусь к отдельной заметке. Применительно к этой заметке, это безопасные миметики физической нагрузки, чьи положительные эффекты выходят за пределы модуляции упражнений.

REV-ERBα лиганды. Выражены в окислительных волокнах, упражнения усиливаю их выраженность, что делает подобный класс молекул перспективными и интересными. Два самых известных вещества SR9009 и SR9011. Данные по ним положительные и интересные, но эффект и безопасность должны быть тщательно освещены, чтобы можно было рекомендовать эти молекулы.

ERRγ лиганды. Молекула GSK4716 заметно апрегулировала биогенез митохондрий, цикл Кребса. При полном отсутствии in vivo экспериментов и исследований говорить о потенциальных эффектах стоит крайне аккуратно.

Выводы:

  • Миметики физической нагрузки – потенциально очень полезные молекулы, которые могут в том числе сымитировать окислительный ремоделлинг мыщц; что потенциально очень важно для пациентов с ограниченной подвижностью, спортсменов и против возрастной медицины;
  • На текущий момент SIRT1 активаторы ресвератрол и NAD+ видятся мне наиболее безопасными и действенными имитаторами физических упражнений;
Поделиться:

Витамин D3. Дефицит на солнце

Print Friendly, PDF & Email

Витамин D3 образуется в коже при воздействии UVB-лучей. Употреблять витамин D3 в «больших» дозировках – «мода» последних лет 5. Тот редкий случай, когда привычка пришла из мира врачей, и ее сложно назвать плохой. Общепринято, что солнце лучше добавок витамина D3, но остаются вопросы:

  • Почему принимая витамин D3 по 5000 МЕ в день в течение нескольких лет, уровень 25(OH)D3 чаще всего бывает не только ниже 50 нмоль/л, но и ниже 30 нмоль/мл?
  • В каких количествах витамин D3 не является токсичным?
  • Почему есть дефицит витамина D в «южных» странах? И что с этим можно сделать?

Витамин D3 и токсичность

Витамин D3 начали активно применять в первой половине ХХ века, заметив его положительный эффект у пациентов с ревматоидным артритом. Дневные дозы D3 увеличивали до 200-300 тысяч МЕ, что приводило к заметным нежелательным явлениям. Затем дневная рекомендованная доза снизилась до 400 МЕ, что сейчас почти общепринято считается недостаточным. Правда, как не сложно догадаться, находится между этими значениями.

Витамин D3

Текущие исследования говорят о том, что витамин D3 не токсичен при дозировках до 30 000 ME в день. При употреблении в течение нескольких месяцев [4, 5].

Оптимальная дозировка D3

По идее дозировка должна быть привязана к желаемым значениям концентрации 25(OH)D3 в крови. Традиционно многие хотят добиться результата в 50+ или 70+ нмоль/литр. Люди с генетическими дефектами рецепторов витамина D иногда вынуждены поднимать концентрацию витамина еще больше.

Большинство людей находятся между 20 и 30 нмоль/литр [5]. И с другой стороны довольно много случаев, когда долгосрочное употребление 3-5 тысяч МЕ в течение нескольких лет не позволяет людям преодолеть значение в 30 нмоль/литр.

8895 МЕ в день необходимы 97,5% людей, чтобы достичь концентрации 25(OH)D3 ≥ 50 нмоль/литр [4].

Естественно, что эти значения зависят от массы тела, географии проживания и других факторов. Но логично будет заменить общепринятые 2-5 тысячи МЕ на 5-10 тысяч МЕ. С учетом значений токсичности, нам еще есть куда отступать.

Дефицит D3 в солнечных странах [1, 2, 3]

 

Мы закончили с легкими вопросами, и остался последний elephant in the room. Почему при избытке солнца и экзогенной формы человек всё ещё может испытывать дефицит витамина D?

На мой взгляд при увлечении биологией и фармакологией не стоит забывать про физику. Белковые структуры живых организмов связывают клеточную воду, за счет усиления дипольного момента молекул воды остовами полипептидных цепей развернутых белков.

Белок может влиять на структурную организацию молекул воды вокруг себя и на свойства этой воды. Но на электронные и индукционные силы внутри белков можно воздействовать внешним излучением. Например, неестественным электромагнитным излучением (nnEMF, non-native Electromagnetic Frequencies), которых в современном мире в избытке. Возьмите хотя бы сотовые телефоны и Wi-Fi.

По ссылке [7, 8] вы можете увидеть, что это действительно так. Это лишь один из немногих примеров. Глутаминовая кислота и фенилаланил меня pH при воздействии магнитного поля. Они теряли протоны, кинетика конвертации глутаминовой кислоты в ГАМК увеличивалась до 50%.

Исследователи предположили, что nnEMF меняют организацию молекул воды вокруг белка, что приводит к изменения гидрофобных взаимодействий.

Возвращая всё к гипотезе Гилберта Линга, nnEMF воздействуют на физические взаимодействия белковых структур, что приводит к тому, что белки могут удерживать меньше воды.

Проще говоря, неестественные излучения современного Мира делают людей обезвоженными. И изменяют взаимодействия белков, воды и ионов. Что мешает как образованию витамина D на солнце, так и образованию в почках активной формы 25(OH)D3 в почках.

Выводы:

  • При долгосрочном применении Витамин D3 не токсичен в дозировках до 30 000 МЕ в день;
  • Большинству людей придется принимать 9-10 тысяч МЕ в день, чтобы поднять концентрацию 25(OH)D3 в крови выше 50 нмоль/л;
  • Неестественные электромагнитные излучения современного Мира мешают синтезу витамина D;
  1. Vitamin D deficiency in Thailand
  2. Vitamin D: a critical and essential micronutrient for human health
  3. A systematic review of vitamin D status in populations worldwide
  4. The Big Vitamin D Mistake
  5. Vitamin D Is Not as Toxic as Was Once Thought: A Historical and an Up-to-Date Perspective
  6. Risk assessment for vitamin D
  7. Deprotonation of glutamic acid induced by weak magnetic field: an FTIR-ATR study
  8. Influence of magnetic fields on the hydration process of amino acids: vibrational spectroscopy study of L-phenylalanine and L-glutamine
  9. TIME #11 CAN YOU SUPPLEMENT SUNLIGHT?
Поделиться:

Эволюция, углеводы и функция щитовидной железы

Print Friendly, PDF & Email

Как вы знаете, уровень Т3 в кето-диете падает. Это, скажем так, является поводом для некоторой озадаченности для LCHF-публики. Что значит снижение Т3, плохо ли это или хорошо – этими и подобными вопросами логично задаваться в подобной ситуации.

Иногда так замечательно выходит, что смена перспективы решает одни проблемы и актуализирует другие. Это и сделал Вольфганг Копп в статье «Питание, эволюция и уровень тироидных гормонов – связь с йододефицитными заболеваниями?»

Вводные:

  • Уровень гормонов щитовидной железы и в частности Т3 зависит от наличия углеводов в диете;
  • Высокоуглеводная диета ассоциируется со значительно более высокими показателями Т3 по сравнению с низкоуглеводной диетой;
  • Наши предки до эпохи земледения ели значительно меньше углеводов (хотя в желудках древних людей находят пшеницу, что тоже важно заметить) и как следствие обладали меньшими значениями Т3;
  • Добавление значительного числа углеводов к низкоуглеводной диете ассоциируется со значительным увеличением концентрации Т3;
  • Большая концентрация Т3 ассоциируется с большими потребностями в йоде; во многих регионах Мира потребность йода превышает доступность;

 

Уровни щитовидных гормонов и питание:

  • Во время голодания концентрация Т3 в крови снижается до плато в 50% примерно в течение 4-6 дней, в это же время уровень [неактивного] изомера rT3 (reverse T3) повышается, а уровень Т4 остается неизменным;
  • Исследования показали, что Т3 снижается не из-за голодания, а из-за снижения углеводов в диете;
  • Рефид белками и/или жира не имеет значительного эффекта на уровень Т3; а около 160 грамм глюкозы полностью восстанавливают уровень Т3;
  • Низкоуглеводная диета ассоциируется с более низкими уровнями Т3; меньше 20 грамм углеводов – Т3 снижается на 50% по сравнению с контрольной группой;

Резкое снижение Т3 на низкоуглеводном питании НЕ связано со снижением поглощения кислорода и с симптомами функционального гипотериодизма (непереносимость холода, сухая кожа, сонливость). Не смотря на сниженные уровни Т3, базовый уровень ТТГ (TSH) в норме или даже немного снижен. Отсутствие клинических симптомов и ТТГ в норме или немного сниженный говорят о том, что организм не страдает из-за снижения Т3 на низкоуглеводной диете.

Причины изменения уровней гормонов щитовидной железы при добавлении углеводов недостаточно ясны.  Судя по всему, пониженный Т3 связан со сниженной периферийной конвертацией Т4 в Т3: в «обычных» условиях заметная часть Т4 (30-40%) периферийно конвертируется в Т3. И в период углеводного голодания периферийный синтез переключается с Т3 на rT3. Изомер rT3 не обладает значим гормональным действием, поэтому получаем общее снижение гормональной активности Т3. При добавлении углеводов в диету начинается периферийный синтез активной Т3 формы.

До эпохи земледения люди зачастую питались низкоуглеводной диетой. Допустим во время ледниковых периодов диета людей не превышала 10 грамм углеводов в день (ссылки на каждое заявление в оригинале присутствуют). В связи с этими историческими данными «неподобающим» уровень Т3 можно считать современный, а не тот, что мы имеем во время голодания и на кето-диете.

Связь с йододефицитными заболеваниями?

Копп предлагает следующее объяснение

С началом эпохи земледелия уровень Т3 человек мог вырасти примерно в 1,5 раза. Это создает дополнительную потребность в йоде. Которая не всегда может быть закрыта нутриентами. Автор предполагает, что изначально уровне Т3 в почте, вероятно, хватало, чтобы обеспечить более низкую потребность в йоде. С началом земледелия и истощением почв уровень йода из локальной диеты часто недостаточен. Отсюда и заболевания.

Выводы для поклонников кето-диеты:

  • Кето не убьет вашу щитовидную железы;
  • Это не кето «снижает» уровень Т3, а присутствие большого количества углеводов в диете поднимает Т3;
  • Поднятый Т3 увеличивает потребность в поступающем с диетой йоде; в тоже время сниженный Т3 на кето понижает потребность в йоде.

Как я и говорил, смена перспективы может многие проблемы поставить «с ног на голову».

Поделиться:

DNP как подтверждение механизма термогенеза

Print Friendly, PDF & Email

DNP – пестицид, который с 1933 по 1938 года активно использовали для похудания американские женщины. В 38 году FDA запретила медицинское использование этой молекулы. И в дальнейшем все врачи, пытающееся выписывать DNP пот тем или иным соусом были осуждены.

DNP делают очень простую вещь. Разобщает градиент митохондрий, заставляя их неистово сжигать жиры в качество топлива и рассеивать энергию в виде тепла. DNP в этом плане не одинока, подобных веществ вагон и маленькая тележка. Кстати, согласно этому исследованию, DNP еще не так сурова, как другие молекулы. И вообще есть разновидность ядов, которые убивают нас, нарушая окислительное фосфорилирование и разобщая градиент митохондрий.

При передозе DNP возможна смерть от гипертермии.
Список побочных эффектов довольно большой.

Молекула показывала нейропротекторный эффект в паре исследований. Но ее применение продолжается из-за мощного жиросжигающего эффекта. Минус 10-12% жира за месяц.

Как я понял, LD-50 (летальная доза) сильно зависит от температуры:
5 mg/kg at 110F (43C)
30-40 mg/kg at 75F (24C)
То есть в жаркой погоде эту молекулу нельзя применять + подавление Т3.

Бодибилдеры и желающие похудеть находят выход из положения – принимают DNP вместе с гормоном щитовидки Т3. А для пущей эффективности жиросжигания не забывают про кленбутерол и эфедрин. Напрашивается аналогия с наркоманскими “качелями”: в одну руку героин, в другую винт (метамфетамин).

Вывода у меня два:

  1. Человеку, желающему кардинально изменить свой внешний вид с потенциальным серьезным риском для здоровья стоит показаться хорошему психиатру. Расстройство дисморфизма тела (body dysmorphic disorder; ICD-10 F45.2) – потенциальный диагноз. И в целом перед принятием подобных решений лучше удостовериться, что вы принимаете его “в своем уме”.
  2. Самое главное. Хотите термогенез – нарушайте окислительное фосфорилирование.
Поделиться:

Биодоступность разных форм омега-3 и поклонники Джека Круза

Print Friendly, PDF & Email

Джек Круз зачастую прекрасен даже тогда, когда он не прав. И иногда он оказывает прав даже при сомнительных вводных, что не менее интересно. Чтение его заметок – занятие непростое. Отчасти от того, что некоторое время он пишет их не лично, а наговаривает на диктофон тезисы, которые за него пишут другие. Он сам это утверждал у Эвана Бренда на подкасте Not Just Paleo. К слову там 4 выпуска с Крузом, и все заслуживают внимания. В целом это не меняет содержательной части, но тезисную форму с «прыжковыми» переходами не всегда просто воспринимать.

В его постоянном арсенале есть сомнительные концепции вроде EZ-воды (воды зоны эксклюзии). Идея Поллака о том, что вода образует зону эксклюзии вокруг любой гидрофильной поверхности, обладает негативным зарядом итд. Достаточно посмотреть критику «дипольной модели» (читайте теории Линга) в книжке Поллака 4-я фаза воды,  чтобы зародились сомнения в его интеллектуальных способностях. У Круза EZ-вода – один из важных столпов объяснения метаболизма. И это может быть вполне не бредом, так как есть теория Линга о многослойной организации поляризованной воды в клетке, которая перекликается с бредом Поллака. По итогу при чтении Круза нужно отделять зерна от плевел, и он не застрахован от ошибок, как и любой другой человек.

Теперь возьмем статью «Как монополя создают время для клеток?». Магнитные монополя – это теоретическая концепция Дирака. Их наличие (что пока не доказано) позволит объяснить квантование электрического заряда (что есть минимальная неделимая и при этом постоянная величина заряда – как есть де факто). Их наличие позволит объединить все известные силы Вселенной в одну теорию (чего пока нет). В этой же заметке эта концепция смешивает с топологическими изоляторам, поверхность которых может быть (по идее Круза) быть магнитным монополем. И все это заканчивается пространными и в хорошем смысле провокационными идеями о том, что это может значить для нашего здоровья.

Круз интересен, но требователен к эрудиции читателя, сознательно провокационен, не застрахован от ошибок и не всегда легок в восприятии.

Как говорится, не так страшен черт, как его бездумные фанаты. И у Круза таких немало.

Возьмем эту ветку, основанную на заметке «Запашок у рыбного жира» (на момент написания не открывалась) некого Денниса Кларка.  Статья посвящена биодоступности разных форм ДГК и написана в духе «журналистской сенсации». Давайте разбираться.

Пропуская базовые вводные от автора про ДГК, рассмотрим его основные тезисы и все ссылки, которые они приводит (всего 3).

БАДы рыбьего жира в Новой Зеландии сильно окислены, и содержание омега-3 не соответствует заявленным на упаковке значениям.

С этим невозможно спорить. ПНЖК (любые: и омега-3, и омега-6) нестабильны и быстро окисляются. Я и сам экспериментировал. Открыл плотную и непрозрачную стеклянную банку с омега-3 и оставил ее не в холодильнике как обычно, а просто на кухне. Чем 2-2,5 месяца продукт был прогоркшим и явно испорченным. В самом конце Кларк советует нам хранить омега-3 в холодильнике, если мы решим пользоваться БАДами. Всесторонне поддерживаю эту рекомендацию и хочу ее расширить на все масла, даже насыщенные.

Затем он говорит о том, что есть разные формы ДГК (тоже верно): эфиры, триглицериды. А далее начинается любимое многими занятие – «подкручивание» реальности в угоду своему мировоззрению. «Правда заключается в том, что биохимики не знают как ДГК и ЭПК, вне зависимости от эфирной или триглицеридной формы, усваиваются кишечником,» – срывает нам несуществующие покровы г-н Кларк. «Ученые не знают сами» или «ученые все врут» – известные приемы вешанья лапши на уши. Схематичный путь метаболизма ПНЖК от кишечника до органов вы найдете на смехе ниже.

Дальше Кларк делится ссылкой на известное исследование 2011 года: ДГК, древний нутриент современного человеческого мозга. Из которого он берет лишь то, что в ДГК в мозгу находится в виде фосфолипидов, где находится как правило в позиции Sn-2. И это приводится как аргумент того, что для большей биодоступности омега-3 должны быть в sn-2 позиции (чуть позже раскроем, что это на картинках).

И последняя ссылка, которую приводит автор, это исследование о Mfsd2a, транспортном белке, который протаскивает ДГК в мозг через гемато-энцефалический барьер. Смысл научной статьи в том, что такой транспортный белок уже обнаружен. Соответственно, могут быть разработаны фармакологические стратегии доставки лекарств в мозг с помощью этого белка или стратегии компенсации недостаточной выраженности этого белка. Также важно заметить, что ДГК во время пересечения ГЭБ находится в форме лизофосфатидилхолина (LPC-DHA). Где ДГК также находится в позиции Sn-2.

Из всего этого делается вывод, что ДГК из рыбьего жира – почти мусор, только рыба. Давайте разбираться, стоит ли печалиться, живя в местах, где со свежей рыбой большие сложности.

У нас в БАДах (и в продуктах) есть 3 основных вида соединений омега-3: эфиры, триглицериды и фосфолипиды.

Эфиры – самая распространенная форма в БАДах, триглицериды – естественная форма в рыбе, также до нее восстанавливают более продвинутые производители, фосфолипиды – крилевый жир. Разные виды липазы участвуют в метаболизме разных форм.

Sn-1, Sn-2 и Sn-3 позиции – это место крепления жировой кислоты к молекуле глицерина. Первая позиция (Sn-1) предпочтительна для насыщенных жиров, вторая (Sn-2) для полиненасыщенных (омега-3 и омега-6), позицию Sn-3 в молекуле фосфолипида занимает (как видно на картинке выше) собственно фосфатная группа.

Давайте вернемся к пути метаболизма ПНЖК. Как видите, в клетках кишечника сначала происходит расщепление до свободных жирных кислот, затем происходит ре-эстерификация до нужной формы (триглицерид, фосфолипид).

Сразу зарождаются сомнения в правоте Кларка. Если омега-3 в любом случае будут расщеплены на свободные жировые кислоты, то не кажется ли проблема биодоступности надуманной. Nordøy et al 1991 советовали, что биодоступность эфирных и триглицеридных форм одинакова. И замечали, что естественная концентрация ЭПК (противовоспалительные свойства) в форме триглицеридов составляет всего 18%, поэтому в клинической практике и исследованиях сознательно используется форма эфиров.

Дальше будет еще интересней. Когда мы не хотим спекулировать, а хотим знать наверняка – проводим эксперимент. Кушаем разные формы омега-3, затем изменяем уровень омега-3 в плазме крови. Dyerberg et al проделали это в 2010 году. 72 участникам исследования предлагали смесь ЭПК/ДГК в течение двух недель. Ниже легенда для понимания графиков:

  • Ре-эстерифицированные триглицериды (rTG)
  • Жир тела рыбы (natural TG, FBO, fish body oil)
  • Жир печени трески (natural TG, CLO, cod liver oil)
  • Свободные жирные кислоты, free fatty acid (FFA)
  • Эфиры этила, ethyl-ester (EE)
  • Кукурузное масло, corn oil (CO, placebo)

Как видим, уровень ДГК лучше всего поднимал жир печени трески (но в нем самом концентрация ДГК большая). Уровень ЭПК больше всего поднимала форма ре эстерифицированных триглицеридов (rTG). Что тоже логично, так как в такой форме ЭПК будет не только в позиции Sn-2, а во всех. И топ-3 по смеси ЭПК+ДГК: rTG, FBO, печень трески. Получается, что БАДом можно быстрее поднять концентрацию омега-3 в плазме крови, чем натур-продуктами: рыбьим жиром или жиром печени трески.

Neubronner et al 2011 сравнивали уровень омега-3 в крови через 6 месяце потребления триглицеридной и эфирных форм. 150 человек ежедневной принимали 1,01 грамм ЭПК и 0,67 грамм ДГК в той или иной форме. Форма rTG поднимает уровень омега-3 в крови быстрее и больше.

Осталась непокрытой только одна форма. Euphausia superba (арктический криль). В крилевом жире мало омега-3, но он там находится в виде фосфолипидов. В крови у нас в итоге все равно будут свободные жировые кислоты, поэтому формула less is more (больше эффекта при меньшей дозировке крилевого жира) требует проверки. Производители нас уверяли, что форма фосфолипидов как-то напрямую усваивается, и в этой форме омега-3 является структурным компонентом мембраны клетки. Давайте смотреть на ресерч.

Ulven et al 2011 продемонстрировали, что метаболический эффект крилевого и рыбьего жира одинаков.

Ramprasath et al в 2013 году показали, что крилевый жир лучше рыбьего, но исследование спонсировано компанией-производителем, и к нему есть процедурные вопросы. И кост-эффективность все равно на стороне рыбьего жира.

И есть небольшое, но очень интересное исследование Schuchardt et al 2011, сравнивающее включение омега-3 в фосфолипиды плазы из рыбьего и крилевого жира после одной дозы омега-3 разных форм.

  • 7,0 г крилевого жира (1050 мг ЭПК: 630мг ДГК)
  • 3,4 г рыбьего жира в виде эфиров (1008мг ЭПК: 672мг ДГК)
  • 3,4 г рыбьего жира в виде триглицеридов (1008мг ЭПК: 672мг ДГК)

Результаты исследования:

  • Максимальная концентрация фосфолипидов плазмы была через 24 часа после принятия;
  • Крилевый жир > Рыбий жир в форме триглицеридов > Рыбий жир в форме эфиров. Только учитывайте экономику. Аплифт в 0,5% концентрации омега-3 стоил в два с лишним раза дороже;
  • В крилевом жире больше свободных жирных кислот, чем фосфолипидов;
  • Выборка маленькая, разброс данных большой. Нельзя сделать однозначный вывод, что фосфолипиды однозначно значительно лучше.

В целом получается:

  • Похоже, что крилевый жир немного более биодоступен, хотя доказательства недостаточны и туманны;
  • Крилевый жир в 2+ раза дороже рыбьего;
  • В крилевом еще есть астаксантин;
  • Форма триглицеридов рыбьего жира более биодоступна, чем эфирная;
  • Рыба лучше тем, что это не только омега-3, но и другие нутриенты, но капсульный рыбий жир как источник омега-3 не менее эффективен.

И напоследок давайте скажем то, чего не сказал Кларк. Почему ПНЖК нестабильны. Идеальной картинки нет, ДГК была бы еще немного в спираль закручена. В общем C=C (двойные углеродные связи) в ПНЖК довольно слабы на электростатическом уровне, и легко нарушаются кислородом / теплом. Поэтому любые ПНЖК: будь то растительные жиры или рыбий жир надо покупать строго в непрозрачной упаковке и хранить строго в холодильнике.

P.S. Графики (да и куча информации) взяты из презентации Нины Бейли на Slideshare.

Поделиться:

Нейротоксичность MDMA

Print Friendly, PDF & Email

MDMA (известное как экстази) – запрещенное на территории России вещество. Относится к серотонергическим галлюциногенам и фенилэтиламинам. Сейчас в США исследуется как средство от борьбы с ПТСР (афганским синдромом) у ветеранов. Лично я не употреблял, не собираюсь и закон РФ нарушать не рекомендую.

MDMA имеет стимулирующий эффект, потому нейротоксично. Давайте разбираться как.

Сравнительно недавно проект The Drug Classroom выложил summary исследований MDMA на животных и людях.

Для исследования психоактивного вещества нужно по уму три группы с большой выборкой:
– “трезвенники”;
– употребляющие только экстази;
– употребляющие всё подряд.

Уже на этом этапе ясно, что во 2-ой группе будет немало лжецов, что будет небольшая выборка и что сложно будет вычленить эффект самого вещества.

Основные возможные негативные эффекты:

  • снижение уровня и активности серотонина: даже при восстановлении маркеров, психическая познавательная деятельность может восстанавливаться годами;
  • утверждение о том, что MDMA приводит к аффективным расстройствам (депрессии, биполярные расстройства итд – расстройства настроения) ничем особо не подтверждается; и всегда будет вопрос это образ жизни довел людей до депрессии или MDMA;
  • повреждение серотониновых аксонов;
  • снижения активности энзима триптофангидроксилазы (синтезирует серотонин из триптофана);

Из интересного (для меня):

  • важен не перерыв между “драг-сессиями”, а общее количество съеденного за жизнь экстази (перерыв в 3 месяца не спасет);
  • чем теплее, тем вернее урон метаболизму серотонина (на жаре есть – доп риск);
  • физические нагрузки снижают риски употребления (что логично, они же способствуют нейрогенезу);
  • ТГК защищает от нейротоксичности MDMA (вот тут наркоманская bro-science не подвела);
  • силденафил (виагра) тоже защищает от нейротоксичности MDMA (распространенное комбо, как и с “травой”);
  • 5-HT, триптофан, NAC, витамин С, витамин Е, Ацетил L-карнитин, Альфа-липолевая кислота защищают от токсичности MDMA (bro-science опять на высоте);
Поделиться:

Метилирование и психическое здоровье

Print Friendly, PDF & Email

Метилирование – это метаболический цикл метиловой группы (CH3).

Есть американский исследователь Виллиам Волш (William Walsh), который еще в 70х пытался делать скрининги опасных преступников, пытаясь найти дисбаланс тех или иных микронутриентов. Изначальные попытки были неудачны, но первое, что Волш обнаружил, что у убийц был нарушен баланс цинка/меди: слишком мало цинка и слишком много меди.

Спустя 30+ лет и множество скринингов он накопил массивную базу данных по дисбалансу нутриентов среди людей с теми или иными психическими расстройствами. С подробной информацией можно ознакомиться в его книге (ссылки ниже).

Среди людей с психическими расстройствами наиболее часто наблюдается дисбаланс следующих нутриентов:

  • нарушения метилирования;
  • дефицит цинка;
  • избыток меди;
  • дефицит или избыток фолатов;
  • дисбаланс пирролов;
  • избыток токсичных металлов;
  • дефицит омега-3

Каждый из этих факторов связан с синтезом нейротрансмиттеров и, что даже более важно, с доступностью и функцией их рецепторов.

Волш разработал поддерживающую терапию для пациентов, целью которой является исправить эти дисбалансы. Со своим подходом он добился весьма неплохих результатов.

Метилирование в данном случае – доминирующий фактор эпигенетического процесса, который регулирует активность нейтротрансмиттеров у дофаминовых и серотониновых рецепторов.

Баланс метилов/фолатов имеет мощное воздействие на экспрессию генов, отвечающих за обратный захват транспортных белков.

Более чем у 60% пациентов с тревожными расстройствами, депрессией, психозами наблюдается серьезный дисбаланс метилирования.

В случае с метиловыми группами есть два варианта отличия от нормы: undermethylation и overmethylation (не уверен на счет точного русского аналога, смысл оригинала, уверен, понятен).

 

Метионин из пищи, используя магний, превращается в SAMe (s-аденозилметионин). Последний, «путешествуя» вместе с молекулами АТФ разносит метиловые группы по организму, становясь в последствии гомоцистеином. B6, B12 и фолиевая кислота могут восстановить гомоцистеин до метионина.

Как видно из следующей схемы есть довольно много мест, где что-то может пойти не так в цикле метиловых групп.

Как я уже упоминал в заметке про кето, большая часть SAMe уходит на синтез креатина. Поэтому регулярные тренировки с использованием креатин фосфатного пути получения энергии не всегда полезны. Для синтеза креатина также важны аргинин, орнитин и глицин.

 

Возможные причины UNDERmethylation:

  • Мутации энзимов (SNPs они же снипы) цикла метилирования: MTHFR (который в шутку называют motherfucker), MS, BHMT, MAT, SAHH и другие;
  • Избыток гистаминов в крови;
  • Дефицит или мальабсорбция белка;

Возможные причины OVERmethylation:

  • Нарушения синтеза креатина:
    • Снипы AGAT или GAMT;
    • Дефицит аргинина, глицина;
  • Нарушения синтеза глутатиона;
  • Спины метилтрансферазы

UNDERmethylation, симптомы и поведенческие черты:

  • Сильные волевые качества, противостояние авторитету;
  • Сезонные дыхательная аллергия;
  • Любящие соперничать в спорте и на работе;
  • Спокойное поведение и внутреннее напряжение;
  • Много «жидкостей» (пота, слюны итд);
  • Обсессивно-компульсивные черты, стремление контролировать;
  • Хорошо реагируют на СИОЗС;
  • Высокое либидо

OVERmethylation, симптомы и поведенческие черты

  • Тревога, склонность к панике;
  • Гиперактивность, дергающиеся ноги;
  • Нарушения сна;
  • Низкое либидо;
  • Отсутствие сезонных аллергий;
  • Чувствительность к еде, бытовой химии;
  • Сухие глаза и рот;
  • Отличная социализация, эмпатия;
  • Не любят соперничать в спорте и на работе;
  • Нежелательная реакция на СИОЗС и анти-гистамины.

Тестирование

Понять своей метиловый статус можно по уровню гистаминов в крови. Слишком много – undermethylation, слишком мало – overmethylation.

Метилирование ДНК

Гистоны – это поддерживающие белковые структуры для нашей ДНК. Изначально считали, что они защищают ДНК от повреждений. Сейчас очевидно, что они играют очень важную роль в проявлении экспрессии генов.

Гистоны контролируют экспрессию генов при помощи химических реакций на своих «хвостиках».

В зависимости от того какие группы находятся на «хостиках» гистонов: ацетиловые или метиловые группы – экспрессия гена будет выражена или подавлена. Соперничество ацетиловых и метиловых групп определяет будет ген выражен или нет.

Ацетилирование гистонов способствует экспрессии генов.

Метилирование гистонов подавляет эту экспрессию.

С помощью терапии микронутриентами (подразумевая, что мы понимаем, что делаем) можно изменить баланс ацетила/метила и отрегулировать создание белков и энзимов, контролирующих функцию серотонина и дофамина.

Экспрессия генов связана с прямым взаимодействием РНК и транскрипторных факторов с ДНК. Эти большие молекулы не могут «дотянуться» до области ДНК/гистонов, если те области плотно сжаты.

Прикрепление ДНК к гистону – электростатический процесс. ДНК – слабые кислоты, гистоны – сильные основания (pH выше 7).

Ацетилирование снижает pH гистонов (то есть делает его более кислотным) размыкая их с ДНК.

Метилирование повышает pH гистонов, повышая сжатие ДНК/гистонов.

 

Ацетил Кофермент А и SAMe – основные доноры ацетила/метила в организме, но их концентрация в клетках мозга относительно неважна.

Ацетилазы, деацетилазы, метилазы, деметилазы (ферменты) определяют прикрепление/убирание ацетиловых и метиловых групп.

Эпигенетическая терапия нутриентами концентрируется на этих энзимах.

Примеры

  • Фоливая кислота, фолиновая кислота, L-метилфолат – эффективные агенты метилирования.
  • Однако фолаты усиливают функцию SERT-транспортных белков, снижая функцию серотонина.
  • Большинство депрессивных людей с undermethylation и низким серотонином не переносят фолаты.
  • Ниацин и ниацинамид способствуют обратному захвату дофамина.
  • Метионин и SAMe подавляют обратный захват серотонина.
  • Фолаты снижают синаптическую активность у рецепторов серотонина, дофамин, норэпинефрина.
  • Глутатион и цинк увеличивают активность NMDA.
  • Множество нутриентов влияет на активность нейротрансмиттеров и функцию мозга.

P.S. Было желание написать информативную и легкую в чтении заметку без воды. Очень многое осталось за скобками, например:

– нюансы диагностики undermethylation/overmethylation;

– как Волш сегментировал психические расстройства с точки зрения недостатка/избытка нутриентов (у него 5 видов депрессий и только в двух из них низкий серотонин);

– опустил вопрос «что делать»;

– ничего не говорил о токсинах и гепатопротекторной функции SAMe (например, его можно купить под ТМ Гептрал).

И многое другое.

Ссылки по теме

http://www.walshinstitute.org/nutrient-power.html

https://www.amazon.com/Nutrient-Power-Heal-Biochemistry-Brain/dp/1626361282

http://www.walshinstitute.org/researchstudies.html

http://www.americanherbalistsguild.com/sites/default/files/Proceedings/light_phyllis-_the_methylation_cycle_and_mental_health.pdf

http://www.walshinstitute.org/uploads/1/7/9/9/17997321/methylation_epigenetics_and_mental_health_by_william_walsh_phd.pdf

 

Поделиться:

BCAA. Ликбез для разоблачителей

Print Friendly, PDF & Email

Часто попадаются “срывы покровов” на тему того, что BCAA не работают.

С ростом мышц связан сигнальный путь mTOR, в частности при мышечной дистрофии с ним что-то не так.
Его стимулируют аминокислоты, в частности лейцин (а изолейцин и валин нет).
http://www.ncbi.nlm.nih.gov/pmc/arti…ihms369262.pdf
The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes | BMC Physiology | Full Text
Role of Leucine in the Regulation of mTOR by Amino Acids: Revelations from Structure–Activity Studies – тут есть короткий обзор как по mTOR, так и по влиянию лейцина на mTOR.
The role of leucine and its metabolites in protein and energy metabolism. – PubMed – NCBI

Статьи Михаила Благосклонного по теме (с эволюционным прицелом), не смотря на фамилию живет и работает в США, потом английский.
http://www.ncbi.nlm.nih.gov/pmc/arti…ing-02-265.pdf
mTOR: from growth signal integration to cancer, diabetes and ageing
TOR-центрическая “квази-программа” старения – MoiKompas.ru – вот на русском, но инфа старая и немного не о том.
Хотя в последней статье подчеркнуто главное – слишком мало и слишком много mTOR плохо.

Сколько нужно и как рассчитывать приема лейцина – наука ответа пока не дала.

Поделиться:

Выбираем рыбий жир

Print Friendly, PDF & Email

Выбираем рыбий жир

Последние два года мне чаще всего задают вопросы именно по рыбьему жиру. Хочу написать не серьезную заметку с адовым количество ссылок на источники, а короткое руководство.

 

Почему так важны омега-3 и какие они бывают

Кто хочет подробно узнать про рыбий жир – рекомендую работу Ронды Патрик (осторожно, английский).

Омега 3:

ЭПК (EPA). Противовоспатительные свойства. Без нее и с ней огромная разница: особенно при ревматологических вещах, при занятиях спортом, при любых воспалительных процессах.

ДГК (DHA). Критически важна для развития мозга. То есть детям прямо очень важна, а вот взрослым ее нужно немного.

ALA. Конвертируется в ЭПК с большими потерями (40 к 1). Льняное масло (где АЛК примерно половина) не является значимым источником нужных там омега-3 кислот.

 

Почему важно следить за количеством омега-3 к омега-6 в пище

Фух. Сейчас принято считать, что идеальный баланс омега-3 к омега-6 в крови должен быть 1 к 1. В современном мире это почти нереально (омега-6 везде), так что 1:3 и 1:4 уже будет хорошим показателем. В Штатах сейчас соотношение омега 3/6 – один из распространенных маркеров воспалительных процессов.

Отчасти отсюда идет мода на grass-fed мясо. Трава – природный источник DHA вне морепродуктов. Соответственно в говядине травяного откорма состав жиров значительно лучше и полезней (омега 3/6 1/1-3), чем в говядине зернового откорма (зерно – истоичник омега 6, соотношение 3/6 тут будет 1/10-15).

Если влияние соотношения омега 3/6 на воспалительные процессы вас интересует, то гуглите что-то вроде omega 3/6 ratio, free radical theory of aging итд.

 

Источники омега-3 (веганы, внимание)

В рыбе омега-3 из фитопланктона, зоопланктона и прочих микроорганизмов, а у тех из водорослей (algae). Так что веганы/вегетарианцы вполне могут поддерживать баланс омега-3, покупая Algae Oil. Пока оно дороже рыбьего жира, но потенциал за счет возобновления большой.

А так все стандартно: жирная красная рыба и разные морепродукты. В идеальном варианте получать свои омега-3 как раз из пищи, а не из добавок. Если захотеть, то кило мороженой нерки, например, вполне можно уложить в 250 рублей.

 

Какие формы рыбьего жира бывают

Эфиры (esters). Большинство рыбьих жиров. Если не указано другое, то так оно и есть.

Триглицериды (triglycerides). В форме триглицеридов рыбий жир находится в самой рыбе. Эта форма легко усваивается организмом и более биодоступная.

Фосфолипиды (phospholipids). Количества омега-3 в жире (крилевом, рыбьем) в виде фосфолипидов будет всегда меньше, чем в эфирных формах (триглицериды – тоже эфиры). Эта форма наименее исследована. Но что известно. Для мозга ДГК/DHA в форме фосфолипидов наиболее приятна. В исследованиях крилевый жир помогал при ревматоидном артрите и при долгосрочном приеме уменьшал симптомы ПМС.

 

Сколько есть рыбьего жира

В среднем 2 грамма омега-3 (не 2 грамма рыбьего жира, а 2 грамма омега-3) в день.

Если какие-то суставные вещи и/или надо резко поднять уровень омега-3 в крови, то 2-3 грамма ЭПК в день в зависимости от веса.

 

Передоз и побочные действия

Рыбий жир немного разжижает кровь. Это даже плюс, но перед операцией следует проконсультироваться с врачом и скорее всего за неделю до операции перестать его употреблять.

От некачественного рыбьего жира может быть рыбная отрыжка, но нормальные марки уже давно с этим справились.

Есть анекдотические случаи желудочного кровотечение от распития рыбьего жира бутылками. Но это крайне маловероятно, так как добавка не самая дешевая.

 

Другие маркеры качества рыбьего жира

Большая концентрация. У качественного рыбьего жира будет от 400 мг ЭПК и 200 мг ДГК на 1000 мл (1 грамм) рыбьего жира.

Molecularly distilled. Молекулярной очистки. Снимает проблему возможного нахождения там разных тяжелых металлов из моря.

Pharmaceutical grade. По сути суммирование первых двух признаков.

 

Итог. Идеальный рыбий жир:

– в форме триглицеридов (это будет отдельно указано на упаковке);

– молекулярной очистки, фармацевтического качества;

– от 400 мг ЭПК и 200 мг ДГК на 1000 мг продукта;

 

Пример

Лучшая марка, имхо, норвежская Nordic Naturals. Есть и для детей, и из печени арктической трески (если вы помешаны на чистоте источника или если детям, так как ДГК будет больше ЭПК раз из печени – как раз для растущего мозга). Марка есть на iHerb.

 

Крилевый жир

Как я уже ранее писал, это форма фосфолипидов + астаксантин. Форма исследована мало, но для ревматологических дел вполне работает. По крайней мере на известных мне людям и на мне работало. Также мозгу приятней получать ДГК в форме фосфолипидов.

Из минусов. Если  у вас аллергия на моллюсков, то можете про него забыть. И стоит дороже. Параноики закидываются и тем, и этим. Я чередую по настроению с упором на рыбий жир.

 

Заключительное слово

Предпочтительнее получать рыбий жир с пищей. Добавка рыбьего жира лично для меня – замена доступных качественным морепродуктам и/или дополнительная страховка.

Поделиться: