Метиленовый синий, митохондрии и нейротрасмиттеры

Метиленовый синий

Чаще всего я стараюсь писать заметки по принципу «1 заметка – 1 мысль», но иногда я вынужден этим правилом поступиться. На метиленовый синий еще в 1925 году выходит 100+ страничные научные обзоры. Информации так много, что не знаю чем начать и чем закончить. Решение этой непростой задачи я выбраю тривиальное – буду писать о том, что мне самому интересно, без претензий на полноту картины.

Метиленовый синий (МС) – фенотиазин, краситель, открытый в 1876 Генрихом Каро.

метиленовый синий

Давайте для начала посмотрим на молекулу и поговорим о возможных свойствах. Ароматические кольца говорят о том, что МС фоточувствителен. Он отлично абсорбирует видимый свет в спектре 600-700 нм, оставляя смотрящему спектр 350-600 нм. Что и дает метиленовому синему его цвет. В восстановленной форме лейко-МС бесцветен, так как не фоточувствителен для видимого спектра.

Метиленовый синий абсорбирует энергию света (фотонов), затем передает эту энергию молекулярному кислороду, создавая синглетный кислород. В синглетном кислороде спины пары «верхних» электронов вращаются в противоположных направлениях. Что дает молекуле кислорода больше энергии и делает ее более реактивной, чем стандартная триплетная версия. Возвращаясь к началу предыдущего абзаца, ароматичность делает МС липофильным, то есть легко проходящим сквозь всевозможные липидные мембраны (в том числе через гемато-энцефалический барьер).

Окисленная форма МС и лейко-МС легко конвертируются друг в друга при помощи кислорода и NADPH/тиоредоксина. Это очень важно для дальнейшей части, так как метиленовый синий в зависимости от формы может быть как донором так и акцептором электронов, при этом быстро меняя одно состояние на другое. Вы уже понимаете в какие дебри я вас затягиваю.

Метиленовый синий и цепь переноса электронов митохондрий

Почти невозможно было найти картинку, отражающую всю интересность происходящего.

Вспомним 3 механизма создания АТФ в митохондриях:

  • Окислительное фосфорилирование (через цепь переноса электронов);
  • Субстратное фосфорилирование (в ходе преобразований субстрата);
  • Реакция аденозин-киназы (2 АДФ ↔ АТФ + АМФ).

Роль субстраного фосфолирования вырастает во время нарушения окислительного фосфорилирования и во время термогенеза бурым жиром. Метиленовый синий заметно усиливает этот механизм создания АТФ. Что-то даже так бегло выходит слишком долго. Итак.

Эффект метиленового синего на митохондрии:

  • Может переносить электроны от NADH и FADH2 напрямую в цитохром С, минуя комплексы I-III; Тем самым улучшая функцию митохондрий с пораженными комплексами; NADH, как видно на картинке выше, восстанавливает МС, а цитохром С, наоборот, окисляет с забиранием электрона;
  • В тоже время МС подавляет NO-синтазу и утилизирует оксид азота; NO, как помните, может блокировать цитохром С; то есть метиленовый синий не только приносит электроны на цитохром С, но и улучшает его функцию;
  • Благодаря возможности создавать синглетный кислород может способствовать снижению гетероплазмии митохондрий и способствовать апоптозу [больных] клеток; то есть МС восстанавливает поток реактивных видов кислорода в комплекс I;
  • В этом же время восстановленный лейко-МС легко реагирует с кислородом, тем самым являясь неплохим антиоксидантом;
  • МС усиливает генерацию АТФ через субстратное фосфорилирование, но вроде бы подавляет АТФ-синтазу;
  • Поддерживает потенциал мембраны митохондрии (∆Ψm);
  • Увеличивает поглощение Ca2+ митохондриями с пораженными комплексами I и III;
  • МС снижает соотношение NADH/NAD+, тем самым противодействуя псевдогипоксии; сейчас проходят клинические испытания NAD+ в этой связи как средство от старения;
    • Тут важно напомнить, что гипергликемия приводит к куче NADH и как следствие к псевдогипоксии, как сопутствующей метаболическим заболеваниям проблеме;
  • Увеличивает утилизацию кислорода в митохондриях, но это перекликается с парой вышеуказанных пунктов.

Получается, что метиленовый синий – отличный способ улучшить функцию своих митохондрий для людей в метаболическими проблемами.

Метиленовый синий и мозг

Ацетилхолин

Увеличивает концентрацию ацетилхолина, подавляя ацетилхолинэстеразу и бутирилхолинэстеразу; ферменты, расщепляющие этот нейротрансмиттер;

Подавляет холин оксидазу, окисляющую холин (прекурсор ацетилхолина) до бетаин альдегида;

Что это значит:

  • Метиленовый синий улучшает память и возможность концентрироваться (в том числе в процессе обучения);
  • Парасимпатичная нервная система (расслабление и восстановление) обменивается ацетилхолиновыми сигналами; будет проще расслабляться и отдыхать;
  • Во время REM-фазы сна холинергические нейроны обладают повышенной активностью; возможно, МС может модулировать качество этой фазы сна.

Глутамат

Высокие концентрации МС прерывают синаптические передачи, опосредованные глутаматом. Но из этого сложно сделать какие-либо выводы, так как исследований по эффекту метиленового синего на глутамат и его рецепторы почти нет.

Дофамин

МС – родственник фенотиазиновых антипсихотиков вроде хлорпромазина. Предполагается, что метиленовый синий модулирует активность дофаминовых рецепторов.

Серотонин

Метиленовый синий традиционно полезен для мозга с нарушениями серотонергической системы. МС является анксиолитиком и антидепрессантом. Повышает экстраклеточные уровне серотонина и дофамина.

Является ингибитором моноаминоксидазы; Если еще точнее, то является МАО-А ингибитором; МАО-ингибиторы – это класс антидепрессантов:

  • МАО-А окисляет серотонин, мелатонин, эпинефрин и порэпинефин; то есть МС увеличивает концентрацию этих нейротрансмиттеров;
  • МАО-ингибиторы в комбинации с СИОЗС могут привести к серотониновому синдрому (избытку серотонина);
  • Возможно, при долгосрочном применении в больших дозировках придется следить за уровнем тирамина в пище;
  • Значительно усиливает действие серотонергических галлюциногенов; в первую очередь то актуально для триптаминов;

Зачем всё это и чего в заметке не будет

Личный интерес. Метиленовый синий может усилить функцию митохондрий и ко всем прочему является отличным ноотропиком. Я хочу попробовать. Но не готов писать риски, дозировки, эффекты, пока не попробую на себе.

Кардиология. МС используют для борьбы с вазоплегией. В больших дозировах нарушает функции нервных окончаний и мышечных волокон. Может усиливать анестетики, раньше так и использовался.

Болезнь Альцгеймера. МС помогает с сенильными бляшками, нейрофибриллярными сплетениями, смертью нейронов. Некоторые исследования говорят, что помогает не сам МС, а его метаболит Azure B. Но это слишком большая тема сама по себе.

Метгемоглобинемия; Разновидность гемоглобина, которая не может связаться с кислородом. МС восстанавливает функцию гемоглобина.

Малярия (детская); Метиленовый синий обладает антибактериальным свойством, приводя к повреждению ДНК патогенов за счет синглетного кислорода и других схожих механизмов. Это изначальное применение красителя.

Бактериальные инфекции; Некоторые исследователи предлагают использовать для профилактики инфекций мочевыводящей системы (цистита) у пожилых женщин.

Токсичность ифосфамида; Лекарство против рака (химеотерапия), которое может приводить к энцефалопатии. МС помогает минимизировать побочные эффекты.

Почитать по теме:

Methylene blue stimulates substrate-level phosphorylation catalysed by succinyleCoA ligase in the citric acid cycle

Methylene Blue: Revisited

Cellular and Molecular Actions of Methylene Blue in the Nervous System

Lest we forget you — methylene blue . .

TIME #14: BIOHACKING “TIME” WITH METHYLENE BLUE

Поделиться:

ПНЖК, мутации десатураз жировых кислот и здоровье современного человека

https://www.ncbi.nlm.nih.gov/pubmed/28333262

http://high-fat-nutrition.blogspot.ru/2017/03/the-pathology-of-evolution.html

FADS гены кодируются десатуразы жировых кислот, которые важные для конвертации короткоцепочных ПНЖК в длинноцепочные.

Исследование концентрируется на изменение однонуклеотидных полиморфизмов (SNP, снипов) под действием смены диеты европейцев с бронзового века до нашего.

Переход к земледелию от охоты и собирательство означает снижение в диете длинноцепочных ПНЖК: ЭПК (EPA, 20:5ω-3), ДГК (DHA, 22:6ω-3) и арахидоновой кислоты (ARA, 20:4ω-6); и одновременный повышением в диете короткоцепочных ПНЖК: линолевой кислоты (LA, 18:2ω-6) и альфа-линоленовой кислоты (ALA, 18:3ω-3).

Авторы показали, что за несколько тысяч лет есть тенденция на отбор тех аллелей FADS генов, которые более активно синтезируют длинноцепочные ПНЖК и более коротких.

Рисунок, уверен, не требует комментариев.

Умные мысли по этому поводу (не мои):

  • Процесс адаптации вида к злакам еще идет полным ходом; Если мы не относимся к везунчикам с нужной мутацией, то простейший способ защиты – регрессировать в диету охотников-собирателей (порезать злаки и увеличить; Если мы еще не адаптировались, а жрем злаки как не в себя, то получите болезни в виде реакции на это несоответствие;
  • Адаптация первого поколения может быть маладаптацией последующего; Если у нас есть мутация FADS генов, которая позволяет нам активно синтезировать длинноцепочные ПНЖК и более коротких, то при неумном потреблении злаков мы насинтезируем себе большое количество таких кислот, и тоже получим метаболические проблемы по схеме, описанной в прошлой заметке схеме. То есть больше инсулина и сахара в клетки – тот же метаболический синдром.

То есть как ни крути, в этой картинке ничего хорошего нет.

На этом я временно закончу с ПНЖК.

Поделиться:

Метилирование и психическое здоровье

Метилирование – это метаболический цикл метиловой группы (CH3).

Есть американский исследователь Виллиам Волш (William Walsh), который еще в 70х пытался делать скрининги опасных преступников, пытаясь найти дисбаланс тех или иных микронутриентов. Изначальные попытки были неудачны, но первое, что Волш обнаружил, что у убийц был нарушен баланс цинка/меди: слишком мало цинка и слишком много меди.

Спустя 30+ лет и множество скринингов он накопил массивную базу данных по дисбалансу нутриентов среди людей с теми или иными психическими расстройствами. С подробной информацией можно ознакомиться в его книге (ссылки ниже).

Среди людей с психическими расстройствами наиболее часто наблюдается дисбаланс следующих нутриентов:

  • нарушения метилирования;
  • дефицит цинка;
  • избыток меди;
  • дефицит или избыток фолатов;
  • дисбаланс пирролов;
  • избыток токсичных металлов;
  • дефицит омега-3

Каждый из этих факторов связан с синтезом нейротрансмиттеров и, что даже более важно, с доступностью и функцией их рецепторов.

Волш разработал поддерживающую терапию для пациентов, целью которой является исправить эти дисбалансы. Со своим подходом он добился весьма неплохих результатов.

Метилирование в данном случае – доминирующий фактор эпигенетического процесса, который регулирует активность нейтротрансмиттеров у дофаминовых и серотониновых рецепторов.

Баланс метилов/фолатов имеет мощное воздействие на экспрессию генов, отвечающих за обратный захват транспортных белков.

Более чем у 60% пациентов с тревожными расстройствами, депрессией, психозами наблюдается серьезный дисбаланс метилирования.

В случае с метиловыми группами есть два варианта отличия от нормы: undermethylation и overmethylation (не уверен на счет точного русского аналога, смысл оригинала, уверен, понятен).

 

Метионин из пищи, используя магний, превращается в SAMe (s-аденозилметионин). Последний, «путешествуя» вместе с молекулами АТФ разносит метиловые группы по организму, становясь в последствии гомоцистеином. B6, B12 и фолиевая кислота могут восстановить гомоцистеин до метионина.

Как видно из следующей схемы есть довольно много мест, где что-то может пойти не так в цикле метиловых групп.

Как я уже упоминал в заметке про кето, большая часть SAMe уходит на синтез креатина. Поэтому регулярные тренировки с использованием креатин фосфатного пути получения энергии не всегда полезны. Для синтеза креатина также важны аргинин, орнитин и глицин.

 

Возможные причины UNDERmethylation:

  • Мутации энзимов (SNPs они же снипы) цикла метилирования: MTHFR (который в шутку называют motherfucker), MS, BHMT, MAT, SAHH и другие;
  • Избыток гистаминов в крови;
  • Дефицит или мальабсорбция белка;

Возможные причины OVERmethylation:

  • Нарушения синтеза креатина:
    • Снипы AGAT или GAMT;
    • Дефицит аргинина, глицина;
  • Нарушения синтеза глутатиона;
  • Спины метилтрансферазы

UNDERmethylation, симптомы и поведенческие черты:

  • Сильные волевые качества, противостояние авторитету;
  • Сезонные дыхательная аллергия;
  • Любящие соперничать в спорте и на работе;
  • Спокойное поведение и внутреннее напряжение;
  • Много «жидкостей» (пота, слюны итд);
  • Обсессивно-компульсивные черты, стремление контролировать;
  • Хорошо реагируют на СИОЗС;
  • Высокое либидо

OVERmethylation, симптомы и поведенческие черты

  • Тревога, склонность к панике;
  • Гиперактивность, дергающиеся ноги;
  • Нарушения сна;
  • Низкое либидо;
  • Отсутствие сезонных аллергий;
  • Чувствительность к еде, бытовой химии;
  • Сухие глаза и рот;
  • Отличная социализация, эмпатия;
  • Не любят соперничать в спорте и на работе;
  • Нежелательная реакция на СИОЗС и анти-гистамины.

Тестирование

Понять своей метиловый статус можно по уровню гистаминов в крови. Слишком много – undermethylation, слишком мало – overmethylation.

Метилирование ДНК

Гистоны – это поддерживающие белковые структуры для нашей ДНК. Изначально считали, что они защищают ДНК от повреждений. Сейчас очевидно, что они играют очень важную роль в проявлении экспрессии генов.

Гистоны контролируют экспрессию генов при помощи химических реакций на своих «хвостиках».

В зависимости от того какие группы находятся на «хостиках» гистонов: ацетиловые или метиловые группы – экспрессия гена будет выражена или подавлена. Соперничество ацетиловых и метиловых групп определяет будет ген выражен или нет.

Ацетилирование гистонов способствует экспрессии генов.

Метилирование гистонов подавляет эту экспрессию.

С помощью терапии микронутриентами (подразумевая, что мы понимаем, что делаем) можно изменить баланс ацетила/метила и отрегулировать создание белков и энзимов, контролирующих функцию серотонина и дофамина.

Экспрессия генов связана с прямым взаимодействием РНК и транскрипторных факторов с ДНК. Эти большие молекулы не могут «дотянуться» до области ДНК/гистонов, если те области плотно сжаты.

Прикрепление ДНК к гистону – электростатический процесс. ДНК – слабые кислоты, гистоны – сильные основания (pH выше 7).

Ацетилирование снижает pH гистонов (то есть делает его более кислотным) размыкая их с ДНК.

Метилирование повышает pH гистонов, повышая сжатие ДНК/гистонов.

 

Ацетил Кофермент А и SAMe – основные доноры ацетила/метила в организме, но их концентрация в клетках мозга относительно неважна.

Ацетилазы, деацетилазы, метилазы, деметилазы (ферменты) определяют прикрепление/убирание ацетиловых и метиловых групп.

Эпигенетическая терапия нутриентами концентрируется на этих энзимах.

Примеры

  • Фоливая кислота, фолиновая кислота, L-метилфолат – эффективные агенты метилирования.
  • Однако фолаты усиливают функцию SERT-транспортных белков, снижая функцию серотонина.
  • Большинство депрессивных людей с undermethylation и низким серотонином не переносят фолаты.
  • Ниацин и ниацинамид способствуют обратному захвату дофамина.
  • Метионин и SAMe подавляют обратный захват серотонина.
  • Фолаты снижают синаптическую активность у рецепторов серотонина, дофамин, норэпинефрина.
  • Глутатион и цинк увеличивают активность NMDA.
  • Множество нутриентов влияет на активность нейротрансмиттеров и функцию мозга.

P.S. Было желание написать информативную и легкую в чтении заметку без воды. Очень многое осталось за скобками, например:

– нюансы диагностики undermethylation/overmethylation;

– как Волш сегментировал психические расстройства с точки зрения недостатка/избытка нутриентов (у него 5 видов депрессий и только в двух из них низкий серотонин);

– опустил вопрос «что делать»;

– ничего не говорил о токсинах и гепатопротекторной функции SAMe (например, его можно купить под ТМ Гептрал).

И многое другое.

Ссылки по теме

http://www.walshinstitute.org/nutrient-power.html

https://www.amazon.com/Nutrient-Power-Heal-Biochemistry-Brain/dp/1626361282

http://www.walshinstitute.org/researchstudies.html

http://www.americanherbalistsguild.com/sites/default/files/Proceedings/light_phyllis-_the_methylation_cycle_and_mental_health.pdf

http://www.walshinstitute.org/uploads/1/7/9/9/17997321/methylation_epigenetics_and_mental_health_by_william_walsh_phd.pdf

 

Поделиться:

Пищеварительные ферменты

Опять же, мопед не мой.

Моего тут только черновой перевод и редкая отсебятина. Ссылку на источник кинуть не могу, так как это из брошюры, которую я бонусом получил за поддержку одного проекта (пожертвовал на книгу о митохондиях).
Continue reading

Поделиться: