Метиленовый синий, митохондрии и нейротрасмиттеры

Метиленовый синий

Чаще всего я стараюсь писать заметки по принципу «1 заметка – 1 мысль», но иногда я вынужден этим правилом поступиться. На метиленовый синий еще в 1925 году выходит 100+ страничные научные обзоры. Информации так много, что не знаю чем начать и чем закончить. Решение этой непростой задачи я выбраю тривиальное – буду писать о том, что мне самому интересно, без претензий на полноту картины.

Метиленовый синий (МС) – фенотиазин, краситель, открытый в 1876 Генрихом Каро.

метиленовый синий

Давайте для начала посмотрим на молекулу и поговорим о возможных свойствах. Ароматические кольца говорят о том, что МС фоточувствителен. Он отлично абсорбирует видимый свет в спектре 600-700 нм, оставляя смотрящему спектр 350-600 нм. Что и дает метиленовому синему его цвет. В восстановленной форме лейко-МС бесцветен, так как не фоточувствителен для видимого спектра.

Метиленовый синий абсорбирует энергию света (фотонов), затем передает эту энергию молекулярному кислороду, создавая синглетный кислород. В синглетном кислороде спины пары «верхних» электронов вращаются в противоположных направлениях. Что дает молекуле кислорода больше энергии и делает ее более реактивной, чем стандартная триплетная версия. Возвращаясь к началу предыдущего абзаца, ароматичность делает МС липофильным, то есть легко проходящим сквозь всевозможные липидные мембраны (в том числе через гемато-энцефалический барьер).

Окисленная форма МС и лейко-МС легко конвертируются друг в друга при помощи кислорода и NADPH/тиоредоксина. Это очень важно для дальнейшей части, так как метиленовый синий в зависимости от формы может быть как донором так и акцептором электронов, при этом быстро меняя одно состояние на другое. Вы уже понимаете в какие дебри я вас затягиваю.

Метиленовый синий и цепь переноса электронов митохондрий

Почти невозможно было найти картинку, отражающую всю интересность происходящего.

Вспомним 3 механизма создания АТФ в митохондриях:

  • Окислительное фосфорилирование (через цепь переноса электронов);
  • Субстратное фосфорилирование (в ходе преобразований субстрата);
  • Реакция аденозин-киназы (2 АДФ ↔ АТФ + АМФ).

Роль субстраного фосфолирования вырастает во время нарушения окислительного фосфорилирования и во время термогенеза бурым жиром. Метиленовый синий заметно усиливает этот механизм создания АТФ. Что-то даже так бегло выходит слишком долго. Итак.

Эффект метиленового синего на митохондрии:

  • Может переносить электроны от NADH и FADH2 напрямую в цитохром С, минуя комплексы I-III; Тем самым улучшая функцию митохондрий с пораженными комплексами; NADH, как видно на картинке выше, восстанавливает МС, а цитохром С, наоборот, окисляет с забиранием электрона;
  • В тоже время МС подавляет NO-синтазу и утилизирует оксид азота; NO, как помните, может блокировать цитохром С; то есть метиленовый синий не только приносит электроны на цитохром С, но и улучшает его функцию;
  • Благодаря возможности создавать синглетный кислород может способствовать снижению гетероплазмии митохондрий и способствовать апоптозу [больных] клеток; то есть МС восстанавливает поток реактивных видов кислорода в комплекс I;
  • В этом же время восстановленный лейко-МС легко реагирует с кислородом, тем самым являясь неплохим антиоксидантом;
  • МС усиливает генерацию АТФ через субстратное фосфорилирование, но вроде бы подавляет АТФ-синтазу;
  • Поддерживает потенциал мембраны митохондрии (∆Ψm);
  • Увеличивает поглощение Ca2+ митохондриями с пораженными комплексами I и III;
  • МС снижает соотношение NADH/NAD+, тем самым противодействуя псевдогипоксии; сейчас проходят клинические испытания NAD+ в этой связи как средство от старения;
    • Тут важно напомнить, что гипергликемия приводит к куче NADH и как следствие к псевдогипоксии, как сопутствующей метаболическим заболеваниям проблеме;
  • Увеличивает утилизацию кислорода в митохондриях, но это перекликается с парой вышеуказанных пунктов.

Получается, что метиленовый синий – отличный способ улучшить функцию своих митохондрий для людей в метаболическими проблемами.

Метиленовый синий и мозг

Ацетилхолин

Увеличивает концентрацию ацетилхолина, подавляя ацетилхолинэстеразу и бутирилхолинэстеразу; ферменты, расщепляющие этот нейротрансмиттер;

Подавляет холин оксидазу, окисляющую холин (прекурсор ацетилхолина) до бетаин альдегида;

Что это значит:

  • Метиленовый синий улучшает память и возможность концентрироваться (в том числе в процессе обучения);
  • Парасимпатичная нервная система (расслабление и восстановление) обменивается ацетилхолиновыми сигналами; будет проще расслабляться и отдыхать;
  • Во время REM-фазы сна холинергические нейроны обладают повышенной активностью; возможно, МС может модулировать качество этой фазы сна.

Глутамат

Высокие концентрации МС прерывают синаптические передачи, опосредованные глутаматом. Но из этого сложно сделать какие-либо выводы, так как исследований по эффекту метиленового синего на глутамат и его рецепторы почти нет.

Дофамин

МС – родственник фенотиазиновых антипсихотиков вроде хлорпромазина. Предполагается, что метиленовый синий модулирует активность дофаминовых рецепторов.

Серотонин

Метиленовый синий традиционно полезен для мозга с нарушениями серотонергической системы. МС является анксиолитиком и антидепрессантом. Повышает экстраклеточные уровне серотонина и дофамина.

Является ингибитором моноаминоксидазы; Если еще точнее, то является МАО-А ингибитором; МАО-ингибиторы – это класс антидепрессантов:

  • МАО-А окисляет серотонин, мелатонин, эпинефрин и порэпинефин; то есть МС увеличивает концентрацию этих нейротрансмиттеров;
  • МАО-ингибиторы в комбинации с СИОЗС могут привести к серотониновому синдрому (избытку серотонина);
  • Возможно, при долгосрочном применении в больших дозировках придется следить за уровнем тирамина в пище;
  • Значительно усиливает действие серотонергических галлюциногенов; в первую очередь то актуально для триптаминов;

Зачем всё это и чего в заметке не будет

Личный интерес. Метиленовый синий может усилить функцию митохондрий и ко всем прочему является отличным ноотропиком. Я хочу попробовать. Но не готов писать риски, дозировки, эффекты, пока не попробую на себе.

Кардиология. МС используют для борьбы с вазоплегией. В больших дозировах нарушает функции нервных окончаний и мышечных волокон. Может усиливать анестетики, раньше так и использовался.

Болезнь Альцгеймера. МС помогает с сенильными бляшками, нейрофибриллярными сплетениями, смертью нейронов. Некоторые исследования говорят, что помогает не сам МС, а его метаболит Azure B. Но это слишком большая тема сама по себе.

Метгемоглобинемия; Разновидность гемоглобина, которая не может связаться с кислородом. МС восстанавливает функцию гемоглобина.

Малярия (детская); Метиленовый синий обладает антибактериальным свойством, приводя к повреждению ДНК патогенов за счет синглетного кислорода и других схожих механизмов. Это изначальное применение красителя.

Бактериальные инфекции; Некоторые исследователи предлагают использовать для профилактики инфекций мочевыводящей системы (цистита) у пожилых женщин.

Токсичность ифосфамида; Лекарство против рака (химеотерапия), которое может приводить к энцефалопатии. МС помогает минимизировать побочные эффекты.

Почитать по теме:

Methylene blue stimulates substrate-level phosphorylation catalysed by succinyleCoA ligase in the citric acid cycle

Methylene Blue: Revisited

Cellular and Molecular Actions of Methylene Blue in the Nervous System

Lest we forget you — methylene blue . .

TIME #14: BIOHACKING “TIME” WITH METHYLENE BLUE

Поделиться:

Эритритол, пентозофосфатный путь и ожирение

В майском PNAS вышла статья «Эритритол – метаболит пентозофосфатного пути, связанный с увеличением жировой массы у молодых людей».

Пару месяцев назад я писал небольшую заметку о пентозофосфатном пути метаболизма глюкозы (PPP). Напомню основные вещи: PPP – альтернативный путь метаболизма глюкозы, в ходе которого образовываются пятифосфатные сахара, их самые восстановленные формы. Например, D-рибоза, которая восполняет гликоген как минимум не хуже глюкозы. Также 5P-формы являются компонентами АТФ, ДНК, РНК и прочих важнейший белковых структур. Вместе с 5P-сахарами образуется мощнейший восстановитель NADHP.

Джек Круз спекулировал, что именно пентозофосфатный путь и D-рибоза позволяют Виму Хофу бегать марафоны без подготовки: как в пустыне, как и за полярным кругом. Небольшое количество источников говорит о том, что PPP активирует стресс: кислород, УФ-спектр, холод, возможно что-то еще.

Эритритол – алкогольный сахар, такой же сладкий как глюкоза, но почти не усваивающийся организмом. Почти нет калорий, нет влияния на гликемический индекс. За что и любим ЗОЖ-сообществом. Пока вернуться к статье.

Статья посвящена биомаркерам в крови подростков, которые изменяются при поступлении в американские ВУЗЫ и корреляция изменений этих биомаркеров с увеличением жировой массы ребят. Это лонгитюдное исследование, которое длилось несколько лет.

В исследовании говорится, что вес 75% ребят претерпевает изменения во время поступление в первые пару лет обучения – полнеют.

Молодых людей разделили на 2 фенотипические группы по уровню гликированного гемоглобина. HbA1c > 5,05% и HbA1c < 4,92%. Со временем смотрели какие маркере биохимии крови соответствовали росту жировой массы.

Предыдущие подобные исследования отмечали изменения в липопротеинах, маркерах воспаления, уровне жировых кислот, прекурсорах гликолиза и, что интересно, концентрации BCAA. Все верно, статистически большая концентрация BCAA соответствовала большему набору жира. Хотя корреляция была слабой. И важно, что это не означает того, что BCAA приводят к ожирению. Это значит, что у полных людей концентрация BCAA будет немного выше. Это же они нашли и в этом лонгитюде, но корреляция была очень низкой, статистически незначимой.

Эдогенный эритритол

Исследователи доказали с помощью изотопных меток, что эритриол синтезируется эндогенно в ходе пентозофосфатного пути метаболизма глюкозы!

Эритритол из пентозофосфатного пути

И что в «гипергликемической» группе концентрация метаболитов эритритола была в 13,4 раз выше! Хотя лактат и фруктозы были заметно ниже.

Выводы исследователей

Что эритритол может быть как-то связан с ожирением. Нужны дополнительные исследования.

Моя критика

Напоминает ситуацию с атеросклерозом и холестерином. Приехали на пожар, увидели пожарных и решили, что пожарные приводят к пожару. Хотя они его тушат. То есть рост концентрации эритритола при росте жировой ткани не говорит о том, что это именно эритритол (который на 90% просто выходит с мочей) приводит хоть как-то к ожирению.

Моя догадка

Пентозофосфатный путь активируется стрессом. Повышенная концентрация глюкозы в крови, вне всяких сомнений, хронический стресс для организма, и совсем не горметический (не приводящий к ответной положительной реакции организма).

Для меня это скорее знак того, что у организма есть ряд встроенных «защит» от метаболических проблем, часть из которых мы не знаем или знаем очень плохо.

Что мы можем синтезировать эритритол эндогенно в ходе PPP – это очень интересно. Но делать из этого выводы о том, что эритритол может способствовать ожирению – для меня очень нелогично.

Поделиться:

Жиры и глюкоза, глюкоза. Влияние диеты на здоровье митохондрий

В предыдущих заметках мы разобрались с тем, как метаболизм жиров и глюкозы отличается на уровне ЭТЦ митохондрий. Углеводы драйвят NADH-метаболизм через Комплекс I. Жиры «качают качели» в сторону FADH2 и Комплекса II.

Что не менее важно, жиры и глюкоза – это именно качели. Метаболизм жиров приводит к обратимой деградации Комплекса I, тем самым помогая метаболизму себя с помощью обратного потока электронов (reverse electron transport, RET) и супероксида О2—; и одновременно подавляю поток электронов через NADH и Комплекс I.

Теперь давайте посмотрим, что будет если мы будем пытаться стимулировать Комплекс I и II одновременно и подумаем на тем, чем это обернется для наших митохондрий.

В этом нам поможет заметка Петро Добромыльского Protons: Superoxide. И исследование из этой заметки за авторством Мюллера и коллег: «High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates».

Авторы этого исследования работали с изолированными митохондриями. Ни цитоплазмы, ни цикла Кребса, ни других клеток, ограниченное время функционирования и так далее. Нашим целям это помогает тем, что они вынуждены были снабжать изолированными митохондрии субстратами, напрямую стимулирующими поток электронов через Комплекс I и Комплекс II.

Малат и глутамат для NADH и Комплекса I, сукцинат для FADH2 и Комплекса II. На выходе они измеряли выделения митохондриями реактивного вида кислорода H2O2, его гораздо удобней измерять, чем супероксид О2—.

Малат+глутамат (Комплекс I) давали 30 (пмоль * мин-1 * мг-1) H2O2;

Сукцинат (Комплекс II) давай 400 пмоль H2O2;

Сукцинат+малат+глутаман (Комплексы I и II, думайте о жире и глюкозе вместе) давали 2000 пмоль H2O2.

Заметки исследователей

Глутамат стимулировал генерацию H2O2, в то время как малат подавлял. Это связано с функцией малата в цикле Кребса. В рамках выбранной темы не буду останавливаться. Есть в самом исследовании и в тексте Добромыльского.

In vivo сукцината не так уж и много в цикле Кребса. В данном случае речь шла о супрафизиологическом количестве сукцината. То есть в реальности жиры (как мы выяснили в прошлой заметке) будут приводить к RET и О2—, но в меньшем количестве, чем в исследовании.

Для генерации большого количества реактивных видов кислорода через одновременную стимуляцию Комплекса I и II, не нужно большого количества концентрации субстратов. Все вполне укладывается в физиологические рамки.

Комментарий Петро

Сводится к тому, что речь идет об обжорстве. Цикл лимонной кислоты дает нам 3 NADH и 1 FADH2 из одной молекулы ацетил КоА. Петро про это явно не пишет, но подразумевается, что избыток пищи сам по себе (обжорство при постоянной доступности углеводов для современного мира) может привести к таким последствиям.

Добромыльский привязывает этой с нейронами. С его точки зрения с гипергликемией организму сложно спорить. И при избытке глюкозы нейроны будут вынуждены потреблять глюкозу вместо лактата и кетонов. Автоматически попадая в супероксидную ловушку.

Мое мнение

Сначала я должен пояснить качели пользы/вреда реактивных видов кислорода (супероксида в частности). Они нужны для нормального функционирования митохондрий. Биогенеза митохондрий не будет без супероксида. Но правило too much of a good thing is bad работает и с супероксидом. ДНК митохондрий (мтДНК) в отличие от ДНК клетки гораздо хуже защищены от оксидативного стресса. И если некоторое количество «кислородного стресса» может стимулировать биогенез митохондрий, то большим количество реактивных видов кислорода митохондрии не справиться – они ее рано или поздно разрушат.

То есть комбинация глюкозы и жиров убивает наши митохондрии огромным количеством реактивных видов кислорода.

В реальной митохондрии все будет усложняться гормонами, в частности инсулином. ПНЖК, как вы помните, делают клетку более чувствительной к инсулину (при большом количества жиров нам нужна физиологическая невосприимчивость инсулину). В клетку проникает еще больше глюкозы, чем это было бы без жира.

Пирожки в масле, беляши, «картошка» с маргарином и прочее мучные и сладкие радости убивают наши митохондрии генерацией супероксида.

Одно из основных правил здорового питания для меня, таким образом, очень простое. Углеводы+белки или белки+жиры. Комбинации углеводов и жиров я стараюсь избегать. Как и частого обжорства углеводами.

Grand Finale

Метаболизм жиров деградирует Комплекс I. Таким образом не имеет недостатков, связанных с обжорством глюкозой и глюкозой/жирами. То есть жиры не могут очень быстро убить нам митохондрию и клетку.

Но при этом метаболизм жира даст нам дополнительно количество реактивных видов кислорода. Что может быть и хорошо, и плохо. Все зависит от контекста.

 

P.S. Я упустил тот момент, что для генерации супероксида нужен высокий потенциал мембраны. Но это также связано с обилием восстановленного CoQ и невозможностью транспортировки электронов парой CoQ в Комплекс III.

 

Поделиться:

Влияние метаболизма жиров на Комплекс I дыхательной цепи переноса электронов

Давайте начнем с того, чем закончили в прошлый раз. Глюкоза «предпочитает» Комплекс I ЭТЦ митохондрий, и ее метаболизм генерирует NADH/FADH2 в пропорции 5:1. Жиры стимулируют поток электронов через Комплекс II и похожие структуры, и генерируют NADH/FADH2 в пропорции примерно 2:1. Не забываем при этом, что FADH2 восстанавливает CoQ до CoQH2.

С метаболизмом жиров нам поможет разобраться статья Guaras et al “The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency”.

Резюме:

  • Путь электронов через FADH2 приводит к восстановлению CoQ до CoQH2;
  • Высокое соотношение CoQH2/CoQ (восстановленного коэнзима Q по отношению к обычному) приводит к тому, что электроны не могут быть перенесены в Комплекс III, возникает обратный поток электронов (RET, reverse electron transport);
  • Этот обратный поток электронов (RET) приводит к созданию супероксида О2—;
  • RET и генерация реактивных видов кислорода приводит к частичной [и обратимой] деградации Комплекса I;
  • Подавление функции Комплекса I (NADH) и большая выраженность Комплекса III являются адаптацией организма к метаболизму жиров.

Невероятно информативная статья. Сложно даже что-то разжевывать еще более. Но давайте чуть более «помусолим» отдельные пункты.

Восстановление CoQ – часть метаболизма FADH2 (вспоминайте цикл Кребса). Если у нас много восстановленного CoQ и мало его окисленной пары, то снизятся объемы переноса электронов к Комплексу III.

Раз электроны не смогут двигаться «вперед», то они пойдут «обратно» по электронной цепи. Создавая при этом супероксид О2— (не обычный кислород О2, а отрицательно заряженный и очень реактивный ион). О2—  будет восстанавливать супероксиддисмутаза до Н2О2.

Соответственно, обратный поток электронов и реактивные виды кислорода начнут деградацию Комплекса I. Что «усилит» метаболизм через FADH2 (из жиров, грубо говоря).

Важно заметить то, что это физиологический, а не патологический процесс. Так организм в нормальных условиях регулирует метаболизм в зависимости от диеты.

Реактивные виды кислорода очень важны для нормальной функции митохондрий. Но этот как раз тот момент, когда разница в лекарстве и яде в дозировке.

Из интересных вещей хочу заметить, что гипоксия (например) продолжительная гипоксия восстанавливает Комплекс I. Вспоминайте о пранаямах.

Авторы не упоминают, что именно они подразумевают под деградацией Комплекса I. Поэтому не совсем ясно какой временной лаг будет оптимальный при переключении метаболизма с жиров на углеводы. Например, вряд ли окисление цистеиновых белков можно быстро восстановить. Очевидно, переключение не будет «мгновенным» и резкое переключение с кето на глюкозу не стоит рекомендовать.

Выводы для любителей кето:

  • Метаболизм жиров приводит к обратимой деградации Комплекса I;
  • Это не патология, а физиологическая адаптация организма к метаболизму жиров;
  • Метаболизм жиров (судя по всему) будет связан с повышенным уровнем генерации реактивных видов кислорода (в данном случае плохо и хорошо зависит от контекста);
  • Первичная кето-адаптация может быть долгой и мучительной (допустим, для веганов), так и резкая обратная адаптация к глюкозе после продолжительного кето может иметь негативные последствия.

Дальше я предлагаю следующее. Мы все знаем, что комбинация жиры + глюкоза вредит метаболическому здоровью. Давайте в 3-ей части посмотрим, что будет происходить, если мы «кормим» Комплексы I и II одновременно.

Поделиться:

Путь жиров и углеводов в дыхательной цепи митохондрий

Это заметка является вводной по отношению к двум следующим. В тоже время она подразумевает, что вы имеет общие представления о дыхательной переноса электронов (Electron transport chain, ETC, ЭТЦ) и о цикле лимонной кислоты (цикл Кребса, ЦТК).

В данном случае мне удобнее перевести уже готовый материал Петро Добромыльского. Я позволю себе вырезать несколько предложений. Тех, которые имеют лишь опосредованное отношение к предмету, но требуют чтения других его заметок и/или дополнительных пояснений.

Резюме: Комплекс I и Комплекс II – отдельные маршруты в дыхательной цепи переноса электронов. Глюкоза предпочитает Комплекс I, жир предпочитает Комплекс II. Теперь расширенная версия.

Вот неплохая смеха ЭТЦ в виде диаграммы митохондрии, взята из Википедии.

Комплекс АТФ синтазы, показанный в верхнем левом углу диаграммы митохондрии, позволяет протонам протоном снаружи внутренней мембраны митохондии проникать назад в матрицу, создавая АТФ в процессе. [текст пропущен] В настоящее pH и электронный градиент поддерживаются электронной транспортной цепью. ЭТЦ переносит положительно заряженные протоны наружу митохондриальной матрицы для поддержания [H+] градиента, который рассеивается во время производства АТФ.

На диаграмме вы можете увидеть две версии ЭТЦ, поддерживаемой циклом Кребса. В правом верхнем углу молекула NADH снабжает электронами Комплекс I. Комплекс I выкачивает какое-то количество протонов, передает электроны пулу коэнзима Q (CoQ, Q на диаграмме) переносчиков электронов, которые передают их в комплекс III. Комплекс II не задействован. Пул CoQ – мобильный резервуар шаттлов восстановления (переносчиков электронов), которые передают электроны Комплексу III.

Во второй версии, показанной в нижней части, сукцинат снабжает Комлпекс II. Комплекс II – фермент сукцинатдегидрогеназы цикла лимонной кислоты. Он встроен в стену внутренней мембраны митохондрий и напрямую передает электроны пулу CoQ, Комплекс I не задействован. Еще одно отличие состоит в том, что Комплекс II не выкачивает H+ протоны.

Выкачивание протонов во время переноса электронов через комплексы III и IV не зависит от входной точки в ЭТЦ. Все, снабжающее пул CoQ [электронами] снабжает по цепочке Комплекс III и Комплекс IV. Как правило.

В итоге у нас есть цикл Кребса, конвертирующий ацетил-КоА в тонну NADH для Комплекса I и щепотку FADH2 для комплекса II.

FADH2 полон сюрпризов. Он встроен глубоко в фермент сукцинатдегидрогеназы и никогда, насколько я понимаю, не покидает ее. Он [Комплекс II] переключается между состояниями FAD и FADH2 во время цикла лимонной кислоты и по сути является мостом для передачи более эффективного окисления сукцината восстановлению пары CoQ.

Другой маршрут ЭТЦ, о котором часто забывают, это электропереносящий флавопротеин-дегидрогеназа (ETFD), у которого нет подходящего запоминающегося обозначения. ETF-дегидрогеназа находится на внутренней мембране митохондрий и передает электроны паре CoQ, также как и Комплекс II, не выкачивая протонов. ETFD получает электроны от FADH2 электронопереносящего флавопротеина, который, к счастью, получает электроны от FADH2 ацил-КоА-дегидрогеназы, первого энзима бета-оксидации. Назад к «своей территории». Глубокий выдох.

Таким образом бета оксидация жирных кислот попадает в ЭТЦ через «подобные Комплексу II» мембранный фермент. Который использует для этого FADH2 и также создает небольшое количество NADH.

Таким образом у нас есть 2, независимые от Комплекса 1, точки входа в пару CoQ.

Ремарка. Есть и третий, если мы считаем глицерин-3-фосфат-дегидрогеназу. Четвертый, если мы считаем глицерин-3-фосфат-оксидазу. Может быть и более. Но давать не будем проще и остановимся на двух… [пропущенный текст]

Таким образом цикл Кребса пускает немного электронов через FADH2 в Комплексе II в сравнении с кем количеством [электронов], которое дает NADH в Комплексе I. Гликолиз еще более сконцентрирован на Комплексе I, и добавляет еще больше NADH к генерации ацетил-КоА. Однако бета-оксидация снабжает [электронами] FADH2 (ETFD), со сравнительной меньшим снабжением NADH от бета-оксидации, в дополнении к ацетил КоА. Естественно, ацетил-КоА (цикл Кребса) [всегда] создает одинаковое соотношение NADH/FADH2.

Подсчеты вы можете увидеть у Лукаса Тафура тут. Цитата:

1 molecule of glucose produces:

2 Acetyl CoA
6 CO2
10 NADH+
2 FADH2

Ratio NADH+:FADH2 = 5:1

ATPs produced from complete oxidation: 30-32 (assuming 2.5 ATP from NADH+ and 1.5 ATP from FADH2)

1 molecule of palmitate produces:

8 Acetyl CoA
16 CO2
31 NADH+
15 FADH2
Ratio NADH+:FADH2 = 2:1 (depending on carbon length)

ATPs produced from complete oxidation: 108 (assuming 2.5 ATP from NADH+ and 1.5 ATP from FADH2)

Как видите, глюкоза дает 5 молекул NADH за каждую FADH2, в то время как жир дает только 2 молекулы NADH за каждую FADH2.

Глюкоза использует Комплекс I значительно больше жира. Жир предпочитает похожие на Комплекс II пути, получая FADH2 от ETFD, также как сукцинатдегидрогеназа (Комплекс II) получает некоторое количество FADH2 от Ацетил-КоА (цикла Кребса).

Обе точки входа FADH2 делают одну и туже вещь для пары CoQ, они восстанавливают ее. Восстановленный пул CoQ обладает значительными последствиями для ЭТЦ и генерации свободных радикалов.

Я предпочитаю есть жир. Но что это делает с комплексом I.

Судя по всему, очевидного ответа нет.

Поделиться:

Биодоступность разных форм омега-3 и поклонники Джека Круза

Джек Круз зачастую прекрасен даже тогда, когда он не прав. И иногда он оказывает прав даже при сомнительных вводных, что не менее интересно. Чтение его заметок – занятие непростое. Отчасти от того, что некоторое время он пишет их не лично, а наговаривает на диктофон тезисы, которые за него пишут другие. Он сам это утверждал у Эвана Бренда на подкасте Not Just Paleo. К слову там 4 выпуска с Крузом, и все заслуживают внимания. В целом это не меняет содержательной части, но тезисную форму с «прыжковыми» переходами не всегда просто воспринимать.

В его постоянном арсенале есть сомнительные концепции вроде EZ-воды (воды зоны эксклюзии). Идея Поллака о том, что вода образует зону эксклюзии вокруг любой гидрофильной поверхности, обладает негативным зарядом итд. Достаточно посмотреть критику «дипольной модели» (читайте теории Линга) в книжке Поллака 4-я фаза воды,  чтобы зародились сомнения в его интеллектуальных способностях. У Круза EZ-вода – один из важных столпов объяснения метаболизма. И это может быть вполне не бредом, так как есть теория Линга о многослойной организации поляризованной воды в клетке, которая перекликается с бредом Поллака. По итогу при чтении Круза нужно отделять зерна от плевел, и он не застрахован от ошибок, как и любой другой человек.

Теперь возьмем статью «Как монополя создают время для клеток?». Магнитные монополя — это теоретическая концепция Дирака. Их наличие (что пока не доказано) позволит объяснить квантование электрического заряда (что есть минимальная неделимая и при этом постоянная величина заряда – как есть де факто). Их наличие позволит объединить все известные силы Вселенной в одну теорию (чего пока нет). В этой же заметке эта концепция смешивает с топологическими изоляторам, поверхность которых может быть (по идее Круза) быть магнитным монополем. И все это заканчивается пространными и в хорошем смысле провокационными идеями о том, что это может значить для нашего здоровья.

Круз интересен, но требователен к эрудиции читателя, сознательно провокационен, не застрахован от ошибок и не всегда легок в восприятии.

Как говорится, не так страшен черт, как его бездумные фанаты. И у Круза таких немало.

Возьмем эту ветку, основанную на заметке «Запашок у рыбного жира» (на момент написания не открывалась) некого Денниса Кларка.  Статья посвящена биодоступности разных форм ДГК и написана в духе «журналистской сенсации». Давайте разбираться.

Пропуская базовые вводные от автора про ДГК, рассмотрим его основные тезисы и все ссылки, которые они приводит (всего 3).

БАДы рыбьего жира в Новой Зеландии сильно окислены, и содержание омега-3 не соответствует заявленным на упаковке значениям.

С этим невозможно спорить. ПНЖК (любые: и омега-3, и омега-6) нестабильны и быстро окисляются. Я и сам экспериментировал. Открыл плотную и непрозрачную стеклянную банку с омега-3 и оставил ее не в холодильнике как обычно, а просто на кухне. Чем 2-2,5 месяца продукт был прогоркшим и явно испорченным. В самом конце Кларк советует нам хранить омега-3 в холодильнике, если мы решим пользоваться БАДами. Всесторонне поддерживаю эту рекомендацию и хочу ее расширить на все масла, даже насыщенные.

Затем он говорит о том, что есть разные формы ДГК (тоже верно): эфиры, триглицериды. А далее начинается любимое многими занятие – «подкручивание» реальности в угоду своему мировоззрению. «Правда заключается в том, что биохимики не знают как ДГК и ЭПК, вне зависимости от эфирной или триглицеридной формы, усваиваются кишечником,» — срывает нам несуществующие покровы г-н Кларк. «Ученые не знают сами» или «ученые все врут» — известные приемы вешанья лапши на уши. Схематичный путь метаболизма ПНЖК от кишечника до органов вы найдете на смехе ниже.

Дальше Кларк делится ссылкой на известное исследование 2011 года: ДГК, древний нутриент современного человеческого мозга. Из которого он берет лишь то, что в ДГК в мозгу находится в виде фосфолипидов, где находится как правило в позиции Sn-2. И это приводится как аргумент того, что для большей биодоступности омега-3 должны быть в sn-2 позиции (чуть позже раскроем, что это на картинках).

И последняя ссылка, которую приводит автор, это исследование о Mfsd2a, транспортном белке, который протаскивает ДГК в мозг через гемато-энцефалический барьер. Смысл научной статьи в том, что такой транспортный белок уже обнаружен. Соответственно, могут быть разработаны фармакологические стратегии доставки лекарств в мозг с помощью этого белка или стратегии компенсации недостаточной выраженности этого белка. Также важно заметить, что ДГК во время пересечения ГЭБ находится в форме лизофосфатидилхолина (LPC-DHA). Где ДГК также находится в позиции Sn-2.

Из всего этого делается вывод, что ДГК из рыбьего жира – почти мусор, только рыба. Давайте разбираться, стоит ли печалиться, живя в местах, где со свежей рыбой большие сложности.

У нас в БАДах (и в продуктах) есть 3 основных вида соединений омега-3: эфиры, триглицериды и фосфолипиды.

Эфиры – самая распространенная форма в БАДах, триглицериды – естественная форма в рыбе, также до нее восстанавливают более продвинутые производители, фосфолипиды – крилевый жир. Разные виды липазы участвуют в метаболизме разных форм.

Sn-1, Sn-2 и Sn-3 позиции – это место крепления жировой кислоты к молекуле глицерина. Первая позиция (Sn-1) предпочтительна для насыщенных жиров, вторая (Sn-2) для полиненасыщенных (омега-3 и омега-6), позицию Sn-3 в молекуле фосфолипида занимает (как видно на картинке выше) собственно фосфатная группа.

Давайте вернемся к пути метаболизма ПНЖК. Как видите, в клетках кишечника сначала происходит расщепление до свободных жирных кислот, затем происходит ре-эстерификация до нужной формы (триглицерид, фосфолипид).

Сразу зарождаются сомнения в правоте Кларка. Если омега-3 в любом случае будут расщеплены на свободные жировые кислоты, то не кажется ли проблема биодоступности надуманной. Nordøy et al 1991 советовали, что биодоступность эфирных и триглицеридных форм одинакова. И замечали, что естественная концентрация ЭПК (противовоспалительные свойства) в форме триглицеридов составляет всего 18%, поэтому в клинической практике и исследованиях сознательно используется форма эфиров.

Дальше будет еще интересней. Когда мы не хотим спекулировать, а хотим знать наверняка – проводим эксперимент. Кушаем разные формы омега-3, затем изменяем уровень омега-3 в плазме крови. Dyerberg et al проделали это в 2010 году. 72 участникам исследования предлагали смесь ЭПК/ДГК в течение двух недель. Ниже легенда для понимания графиков:

  • Ре-эстерифицированные триглицериды (rTG)
  • Жир тела рыбы (natural TG, FBO, fish body oil)
  • Жир печени трески (natural TG, CLO, cod liver oil)
  • Свободные жирные кислоты, free fatty acid (FFA)
  • Эфиры этила, ethyl-ester (EE)
  • Кукурузное масло, corn oil (CO, placebo)

Как видим, уровень ДГК лучше всего поднимал жир печени трески (но в нем самом концентрация ДГК большая). Уровень ЭПК больше всего поднимала форма ре эстерифицированных триглицеридов (rTG). Что тоже логично, так как в такой форме ЭПК будет не только в позиции Sn-2, а во всех. И топ-3 по смеси ЭПК+ДГК: rTG, FBO, печень трески. Получается, что БАДом можно быстрее поднять концентрацию омега-3 в плазме крови, чем натур-продуктами: рыбьим жиром или жиром печени трески.

Neubronner et al 2011 сравнивали уровень омега-3 в крови через 6 месяце потребления триглицеридной и эфирных форм. 150 человек ежедневной принимали 1,01 грамм ЭПК и 0,67 грамм ДГК в той или иной форме. Форма rTG поднимает уровень омега-3 в крови быстрее и больше.

Осталась непокрытой только одна форма. Euphausia superba (арктический криль). В крилевом жире мало омега-3, но он там находится в виде фосфолипидов. В крови у нас в итоге все равно будут свободные жировые кислоты, поэтому формула less is more (больше эффекта при меньшей дозировке крилевого жира) требует проверки. Производители нас уверяли, что форма фосфолипидов как-то напрямую усваивается, и в этой форме омега-3 является структурным компонентом мембраны клетки. Давайте смотреть на ресерч.

Ulven et al 2011 продемонстрировали, что метаболический эффект крилевого и рыбьего жира одинаков.

Ramprasath et al в 2013 году показали, что крилевый жир лучше рыбьего, но исследование спонсировано компанией-производителем, и к нему есть процедурные вопросы. И кост-эффективность все равно на стороне рыбьего жира.

И есть небольшое, но очень интересное исследование Schuchardt et al 2011, сравнивающее включение омега-3 в фосфолипиды плазы из рыбьего и крилевого жира после одной дозы омега-3 разных форм.

  • 7,0 г крилевого жира (1050 мг ЭПК: 630мг ДГК)
  • 3,4 г рыбьего жира в виде эфиров (1008мг ЭПК: 672мг ДГК)
  • 3,4 г рыбьего жира в виде триглицеридов (1008мг ЭПК: 672мг ДГК)

Результаты исследования:

  • Максимальная концентрация фосфолипидов плазмы была через 24 часа после принятия;
  • Крилевый жир > Рыбий жир в форме триглицеридов > Рыбий жир в форме эфиров. Только учитывайте экономику. Аплифт в 0,5% концентрации омега-3 стоил в два с лишним раза дороже;
  • В крилевом жире больше свободных жирных кислот, чем фосфолипидов;
  • Выборка маленькая, разброс данных большой. Нельзя сделать однозначный вывод, что фосфолипиды однозначно значительно лучше.

В целом получается:

  • Похоже, что крилевый жир немного более биодоступен, хотя доказательства недостаточны и туманны;
  • Крилевый жир в 2+ раза дороже рыбьего;
  • В крилевом еще есть астаксантин;
  • Форма триглицеридов рыбьего жира более биодоступна, чем эфирная;
  • Рыба лучше тем, что это не только омега-3, но и другие нутриенты, но капсульный рыбий жир как источник омега-3 не менее эффективен.

И напоследок давайте скажем то, чего не сказал Кларк. Почему ПНЖК нестабильны. Идеальной картинки нет, ДГК была бы еще немного в спираль закручена. В общем C=C (двойные углеродные связи) в ПНЖК довольно слабы на электростатическом уровне, и легко нарушаются кислородом / теплом. Поэтому любые ПНЖК: будь то растительные жиры или рыбий жир надо покупать строго в непрозрачной упаковке и хранить строго в холодильнике.

P.S. Графики (да и куча информации) взяты из презентации Нины Бейли на Slideshare.

Поделиться:

Кето-1. Почему жиры и что такое пентозофосфатный путь метаболизма глюкозы

Начнем сначала с того, почему жиры.

Пища – это источник, в первую очередь, углерода и энергии. Вспомним эти расчеты.

1 молекула глюкозы дает 38 молекул АТФ;
1 молекула 18-углеродной стеариновой кислоты дает 147 молекул АТФ, притом всего лишь в 2 раза больше калорий.

В данном случае с глюкозой с 1 атом углерода мы получаем примерно 6,3 молекул АТФ; со стеариновой кислотой – 8,2 АТФ.

Это происходит из-за того, что жиры – менее окисленная форма углерода, чем углеводы, как точно заметил Д.С. немного раньше. То есть жиры могут в процессе метаболизма окислиться (что они успешно и делают), дав больше энергии чем углеводы.

Углеводы же за счет того, что они более окисленная форма углерода, приводят к избыточной генерации реактивных видов кислорода в дыхательной цепи митохондрий [1,2, и другие исследования].

Чтобы проговорить все возможные каналы получения энергии, давайте вспомним про креатин. С ним нюанс в том, что креатин поглощает больше метиловых групп (CH3), чем все остальные реакции тела, вместе взятые [3, 4].  Баланс метилирования в организме – критическая функция для физического и психического здоровья (не говоря уже о долголетии), так как этот фактор напрямую определяет эксперссию генов [5].

У нас вроде бы остается только один путь выработки энергии: бета-оксидация, но на самом деле куда больше. Сейчас предлагаю рассмотреть пентозофосфатный путь метаболизма глюкозы. Он же pentose phosphate pathway, сокращенно PPP/ПФП.

Это альтернативный путь метаболизма глюкозы, когда она не поступает в цикл Кребса [6,7]

В ходе ПФП происходит 2 важных вещи, помимо синтеза АТФ: образование 5-фосфатных сахаров (в частности D-рибозы) – это более восстановленная версия углерода, чем 6-фосфатные формы; и образование NADPH [7, 8, 11, 12], как мощнейшего инструмента восстановления в паре восстановление-окисление. Восстановленное можно окислить, получив дополнительную энергию.

5-фосфатные формы являются неотъемлемыми компонентами [синтеза] АТФ, КоА, NADP+, FAD, РНК, ДНК. Кроме того, D-рибоза является эффективным источником восстановления гликогена в печени [9,10].  Так как это более восстановленная форма, ее можно окислить обратно до 6-фосфатной формы, получив энергию (допустим, для синтеза ДНК).

NADPH в рамках крайне важного для организма восстановительного свойства, может восстанавливать глутатион, основной клеточный антиоксидант [8, 13]. Забудьте БАДы глутатиона – он расщепляется желудком. Забудьте комбинации NAC+R-lipolic+VitC – это не дает гарантий повышения уровня глутатиона. ПФП – это наш выбор. Что приводит нас к очевидному вопросу.

Как активировать пентозофосфатный путь?

Не самый исследованный метаболический путь у людей. Давайте попробуем разобраться.

Одна из стратегий борьбы с раковыми клетками – убить их чрезмерным количество реактивных видов кислорода. Раковые клетки пытаются защититься, активируя ПФП [14].

В растениях, где регуляция ПФП более исследована, этот метаболический путь активируется стрессом кислорода [15] и во время акклиматизации к холоду, что тоже во многом было связано с оксидативным стрессом [16].

Оксид азота приводит к апрегуляции ПФП [17]. Если вы вспомните лекции Александра Вунша по фотобиологии [18, 19],  УФ-спектр приводит к высвобождению нами оксида азота и к блокированию последним цитохрома С дыхательной цепи митохондрий. Что выравнивает ИК-спектр света, «выгоняющий» NO из цитохрома С.

Исследование 15-го года [20] говорит о том, что активация PPP – является первой помощью организма в ответ на оксидативный стресс кожи при контакте с УФ-лучами.

Вышеприведенные факты легко соединяются воедино. Организм испытывает стресс (в первую очередь оксидативный: солнце, кислород) и активирует защитный ПФП, который приведет к образованию NADPH с его восстаналивающим потенциалом, который сможем качнуть «оксидативные» качели обратно.

Очевидных ответа два: солнце (без защитных кремов и очков) и оксидативный стресс физических упражнений.

  1. https://www.ncbi.nlm.nih.gov/pubmed/10831788
  2. https://www.hindawi.com/journals/jnme/2012/238056/
  3. https://www.ncbi.nlm.nih.gov/pubmed/11595668
  4. http://easacademy.org/trainer-resources/article/creatine-more-than-sports-supplement
  5. http://www.news-medical.net/life-sciences/Role-of-DNA-Methylation-in-Disease.aspx
  6. https://www.khanacademy.org/test-prep/mcat/biomolecules/carbohydrate-metabolism/a/pentose-phosphate-pathway
  7. https://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/pentose.htm
  8. https://www.jackkruse.com/emf-4-why-might-you-need-carbs-for-performance/
  9. http://www.jbc.org/content/224/2/851.full.pdf
  10. https://www.ncbi.nlm.nih.gov/pubmed/24982199
  11. http://www.nature.com/nature/journal/v510/n7504/full/nature13236.html
  12. https://www.ncbi.nlm.nih.gov/pubmed/17533217
  13. https://www.ncbi.nlm.nih.gov/pubmed/3803464
  14. https://www.ncbi.nlm.nih.gov/pubmed/25037503
  15. http://www.sciencedirect.com/science/article/pii/S000398611630385X
  16. http://journal.ashspublications.org/content/134/2/210.abstract
  17. https://www.ncbi.nlm.nih.gov/pubmed/18455501
  18. https://vimeo.com/174504341
  19. https://vimeo.com/187834155
  20. https://www.ncbi.nlm.nih.gov/pubmed/26190262
Поделиться:

Протокол закаливания от Джек Круза

Оригинал. Ниже мой перевод с небольшими правками (чтобы мне самому было проще и понятней).

Протокол закаливания Круза и как начать закаливаться от него же.

Как закаливание и лептин связаны друг с другом?

  • Когда кожа подвергается воздействию холода, сигналы гипоталамуса приводят к клеточной смерти (апоптозу) подкожной жировой ткани без вреда коже и мышцым;
    • Это означается что воздействие холода стимулирует чувствительность к лептину;
  • Закаливание стимулирует конвертацию белого жира в бурый (способный генерировать тепло).

Какие шаги помогут правильно закаливаться?

  • Съешьте высоко жировое и/или белковое блюдо;
  • Выпейте 0,4-0,9 литра ледяной воды;
    • Постарайтесь не пить больше 0,9 литра воды, так как закаливание влияет на жажду

Начните с приучения вашего лица к холоду

  1. Охладите воду до 10-13 градусов;
  2. Снимите макияж и другую продукцию с лица;
  3. Опустите лицо в воду насколько сможете;
  4. Остановитесь, когда вам нужно подышать;
  5. Если вы можете держать лицо в воде до того момента, когда вам нужно забрать воздух, двигайтесь дальше.

Купите компрессионную футболку, поместите на нее 10-20 кг льда (в двойной упаковке, чтобы не протек), не на кожу. Попробуйте продержать лед хотя бы 5 минут на себе. С каждой новой сессией добавляйте дополнительные 5 минут пока не дойдете до 60.

  1. Если вы можете выдержать 60 минут, помещайте пакеты со льдом прямо на кожу;
    1. Оба эксперимента проводите в помещении, где вы можете контролировать температуру воздуха;
    2. Ваша кожа должна становиться розовой или вишнево-красной. Если кожа белеет, немедленно примите теплый душ и проверьте соотношение омега-6 к омега-3 в крови. Оно должно быть меньше 10 к 1.
  2. Если вы можете вытерпеть ледяные пакеты прямо на вашей коже, переходите к следующему пункту.

Время ванных процедур

  1. Заполните ванную холодной водой;
    1. Оденьте шапку, носки, перчатки, чтобы защитить конечности;
  2. Когда сможете терпеть холодную воду из-под крана, добавляйте 10 кг льда;
  3. Как только вы адаптировались ко льду, то снимайте шапку, носки, перчатки;
  4. Контролируйте температуру поверхности кожи, она не должна падать ниже 10-13 градусов;
  5. Цель – провести 45 минут в ледяной бане;
  6. Можно добавить 10 дополнительных килограмм льда, если ваш организм это выдерживает.
Поделиться:

Виагра и меланома

Для обобщения давайте говорить обо всех ФДЭ-5 блокаторах в рамках так называемой «крузятины«, то есть в духе доктора Джека Круза сводить многие вещи к свету, воде, электромагнитным силам.

https://www.drugwatch.com/viagra/melanoma/ — есть небезынтересный сайт DrugWatch, где среди прочего писали о том, что виагра (мнн синденафил) повышает риск меланомы у американских мужчин примерно в 2 раза. Давайте разбираться.

Заявление это основано на когортном исследовании 2014 года, опубликованное в JAMA.

Круз связывает это с оксидом азота, сосудорасширяющее действие которого хорошо известно. NO и ФДЭ-5 связаны, но не совсем напрямую.

Если вы помните лекцию Вунша по фототерапии, ближний ИК-спектр очищает от NO цитохром С, восстанавливая работу электронной цепи митохондрий.
И хочу добавить известный факт, что UV-A спектр активирует NO и высвобождает его из кожи. Тынц. Но исследований по этой теме много.

Пики усвоения NO от фдэ-5 блокаторов (виагра, сиалис, левитра и всякие дженерики) + гетероплазмия митохондрий в условиях современного мира (чужеродные ЭМП, синий спектр света вечером итд).
NO замечательный стимулятор ангиогенеза (образования новых кровеносных сосудов). Ангиогенез в том числе является биомаркером онкологии.
+ раз кровью снабжается лучше пенис, значит меньше достается сердцу (отсюда связь эрекций и сердечных приступов) и другим тканям.

Напомню, что гормон роста и действие ряда его стимуляторов увязано на оксид азота.
Важно понимать понимать, что оксид азота (особенно в неестественной гигиене света) может иметь свои негативные последствия.
Оригинальный пост по теме есть на фейсбуке Круза, я все сильно упросил, уменьшил и добавил свои 2 копейки.

Поделиться:

TUNA INTERNATIONAL

«Устрицы — идеальная еда для млекопитающих с большим мозгом»
«В одной сырой устрице столько же питательных веществ, сколько и в фунте говяжьей печени травяного окорма.»
(Джэк Круз)

Оптимальная для нашего мозга еда по мнению доктора Круза. В Москве, увы, дорогие и чаще всего 2-й свежести.
Есть огромнейшая разница между вкусом и запахом глубокого чистого моря и ощущениями от полуразложившейся туши «в собственном соку» у себя в рту. Для Москвы ближе второй вариант.

Так вот. Вариантов, где в Москве можно поесть вкусно — мало. Где можно поесть вкусно и полезно, не жрите-сами-свои-омега-6 веганскую еду, а именно то, что для нашего организма оптимальней всего, — почти нет. Тем приятней рассказать об исключении.

В Москве на месте «Метелицы» недавно открылся Food Market The 21. 20+ забегаловок под одной крышей, многие из которых совсем не формата «фаст фуд». Лично я отметил для себя пока 2 места: индийскую забегаловку INDA FISH, о которой я расскажу позже, и TUNA INTERNATIONAL.

Тар-тар из тунца. Тунец слегка подмаринован (от 30 минут до пары часов), но сохраняет все те качества за которые мы его любим. Возможно, чуть пересолено. Но крайне вкусно. Пожалуй, лучший тар-тар из тунца, что мне доводилось есть в Москве. Даже пряное растительное масло не смущает.

И наши звезды — японские устрицы. Сверху немного острой сальсы. Хм.
Вот я убежден, что это лишнее лично для меня. Мне нравится естественный вкус устриц в свежей соленой воде. Но для широкой публики это, конечно, то, что надо.
В самих устрицах никаких посторонних привкусов. Очень чистый вкус. Это, конечно, не устрицы через несколько минут после ловли, но вполне достойная заявка на лучшие устрицы в Москве.

Поделиться: