Кетогенная диета и нервная система

Кетогенная диета – высоко жировая диета, когда большая часть органов и мозга начитают питаться не глюкозой, а жировыми кислотами и кетонами. Коппел и Свердлов опубликовали в журнале нейрохимии обзорное исследование «Нейрокетотерапия: современный взгляд на вековую терапию». Как всегда, в конце выводы для тех, кому не очень интересно читать нюансы биохимии.

История кетогенной диеты

Еще Гиппократ рекомендовал лечить эпилепсию голоданием. Исторически было хорошо известно, что продолж

ительное голодание снижает частоту и силу припадков. Вспомните картину «Преображение» Рафаэля, где справа внизу картины нарисован мальчик, у которого заканчивается приступ. Можно только поражаться мастерству Рафаэля, потому что он изобразил мальчика, выходящего из конвульсий, то есть исцеленного. Это эпизод из 17 главы Евангелия от Матфея, как раз где есть по-библейски глубокая фраза «если вы будете иметь веру с горчичное зерно и скажете горе сей: «перейди отсюда туда», и она перейдет; и ничего не будет невозможного для вас». К Иисусу подошел мужчина и попросил исцелить «бесноватого» отрока. Иисус его исцелил, а на вопрос как ответил: «сей же род изгоняется только молитвою и постом». Традиционно это считается описанием лечения эпилепсии.

Кетогенная диета появилась как имитация эффектов голодания на эпилепсию, но без сильно

 

катаболической части, которая неизбежно сопровождает продолжительное голодание.

С изобретением антиконвульсантов популярность кетогенной терапии сначала упала, но с 90-х ее популярность начала возвращаться. Был даже снят телефильм «Не навреди» о ребенке-эпилептике, не реагирующим на лекарства. Сейчас кето-диета используется в первую очередь для лечения устойчивой лекарствам эпилепсии, для снижения дозировок и, соответственно, снижения побочных эффектов антиконвульсантов (вроде вальпроевой кислоты).

Кетогенез

У млекопитающих к кетозу приводит продолжительное голодание. В результате снижается концентрация инсулина в крови и повышается концентрация глюкагона. Активность глюкагона приводит к гликогенезу (расщеплению гликогена до глюкозы) и глюконеогенезу (синтезу глюкозы из белков и в меньшей степени жиров). Снижение инсулина способствует липолизу белой жировой ткани, что приводит к увеличению концентрации жировых кислот и бета-оксидации.

Бета-оксидация жировых кислот происходит в печени, где создается много ацетил-КоА. Как только количество ацетил-КоА начинает превышать способности цикла Кребса его «переработать», ацетил-КоА уходит на другие нужды: синтез холестерина или кетогенез.

2 молекулу ацетил-КоА объединяются ферментом тиолазой в ацетоацетил-КоА. Затем добавляется третья молекула ацетил-КоА и получается бета-гидрокси-бета-метилглюкарил-КоА (HMG-CoA), реакция проводимая ферментом HMG-CoA синтазой. Реакция HMG-CoA синтазы – ограничивает скорость химической реакции в кетогенеза. HMG-CoA лиаза освобождает две углеродные группы с созданием одной молекулы ацетил-КоА и одной молекулы ацето-ацетата. Ацето-ацетат – первое кетоновое тело, создаваемое во время кетогенеза. Далее ацето-ацетат восстанавливается с помощью NADH и бета-гидроксибутират дегидрогеназы 1 (BHD1) до самого распространенного кетонового тела в нашем организме – бета-гидроксибутирата. Схематически это отображено на рисунке ниже.

Дефицит HMG-CoA лиазы предотвращает кетогенез. При продолжительном голодании дефицит этого фермента приводит к патологическому состоянию гипогликемии и низкой концентрации кетонов одновременно. Это состояние часто ассоциируется с приступами.

Небольшая часть ацетоацетата без участия энзимов теряет углеродные группы (декарбоксилирование) и превращается в ацетон. Ацетон токсичен в больших количествах. В печени конвертируется через метилглиоксальный путь. Так как ацетон крайне летучий, то есть уровень его производства превышает способность печени его конвертировать, то он выделяется через дыхательную систему. В итоге ацетон не достигает заметной концентрации во время кетогенной диеты или голодания.

Синтез бета-гидроксибутирата (BOHB) и ацетоацетата дает 2 молекулы ацетил-КоА и оксидацию NADH.

Кетоны в организме синтезируют гепатоциты и астроциты. В ответ на повышение жира в диете астроциты начинают синтезировать кетоны, обратная связь через вентромодальные нейроны гипоталамуса. Напомню, что есть астроцито-нейронный лактатный шатл (ANLS), когда астроциты перерабатывают глюкозу в лактат и отправляют его в нейроны. Вспоминайте идеи Добромыльского.

Кетолиз

После синтеза в печени монокарбоксильные кислотные транспортеры высвобождают кетоны в кровь, и те становятся доступными органам. После пересечения ГЭБ [транспортеры] MCT 1 и 2 доставляют кетоны в астроциты и нейроны соответственно. Кетоны протаскиваются через цитоплазму в митохондрии, где их и перерабатывают. Переработка кетонов похожа на обратный порядок их создания, но есть некоторые отличия.

В частности, для расщепления ацетоацетата нужен фермент сукцинил-КоА:3-кетокислота трансфераза (SCOT). В гепатоцитах печени отсутствует этот фермент. Гепатоциты печени могут создавать, но не могут потреблять кетоны. Что и объясняет особую роль в печени в кетогенезе.

Схема расщепления кетонов указана на рисунке выше. Все заканчивается в цикле Кребса и дыхательной цепи переноса электронов.

Кетоны сами по себе подавляют гликолиз и стимулируют окислительное фосфорилирование. Так как окисление бета-гидроксибутирата до ацетоацетата сопровождается восстановлением NAD+ до NADH, это само по себе питает комплекс 1 и снижает потребность в глюкозе.

Также кетоны доставляют углерод в цикл Кребса, тем самым повышая его анаплероз (наличие субстратов для каскадных реакций цикла).

Кетоны способствуют синтезу гамма-аминомасляная кислоты (GABA) из глутамата. Также ацетил-КоА в соединении с холином (допустим, из яиц) приводит к синтезу ацетилхолина. Поэтому кетоны влияют не только на биоэнергетику, но и на уровень нейротрансмиттеров.

Кетоновые тела и функция митохондрий

Кетогенная диета усиливает экспрессию белков дыхательной цепи и разобщающего белка 1 (UCP 1, термогенин). Что способствует «бурению» жировой ткани, переключая поток электронов с создания АТФ на генерацию тепла. Также повышенная вытечка протонов в матрикс смягчает генерацию реактивных видов кислорода и азота, позволяя избегать гиперполяризации.

Экспрессия UCP4 и UCP5 увеличилась у крыс в 1,5 раза во время кетоновых добавок. У нейронов экспрессия UCP4 была наиболее сильна, у астроцитов наименее. Кетогенная диета повышает экспрессию UCP4 и UCP2 в гиппокампальной зубчатой извилина крыс, что защищало животных от негативных эффектов химических ингибиторов комплекса 1 и комплекса 2.

Если коротко, то кетоны имеют нейрозащитный эффект с помощью повышения экспрессии разобщающих белков (UCP). Предположительно в этом задействован сигнальный путь Nf-Kb (эн-эф-каппа-би) и увеличенное производство АТФ через поток электронов на комплекс II.

Кетогенная диета воздействует на RONS не только регуляцией экспрессии разобщающих белков. У крыс через 3 недели кето-диеты повышался уровне глутатиона (мощный клеточный антиоксидант). Предположительно за счет влияния на фермент глутамат цистеин лигазу (GCL), чье количество ограничивает синтез глутатиона.

Относительно самих реактивных видов, как помните, кетогенная диета изначально повышает их производство, что активирует сигнальные пути реакций на оксидативный стресс (Nrf2).

Кето-диета питает различные белковые структуры, что в одном из исследований приводило к росту количества митохондрий в гиппокамальной зубчатой извилине крыс. Хотя не совсем ясно за счет чего это произошло: усиление биогенеза митохондрий, снижения митофагии, комбинации обоих или чего-то еще.

Кетоновые тела и посттрансляционная модификация белков

Бутират способствует ацетилированию гистонов. Повышенные уровни бета-гидроксибутирата подавляют гистон деацетилазы 1, 3 и 4 и повышают ацетилирование гистоновых «хвостиков». Ацетилирование усиливает экспрессию генов, связанных с FOXO3A (фоксо три) белком. Нарушения функции этого белка связаны с туморогенезом, ростом опухолей. Один из генов, зависимых от FOXO3 – тот, которые регулирует активность марганец супероксид дисмутазы (MnSOD) и каталазы, которая дисмутирует О2 супероксид.

Также кетоны модифицируют остатки лизина со схожим эффектом.

Кетоновые тела и экстраклеточные сигналы

Помимо усиления сигнальной экстраклеточной функции, BOHB может функционировать как экспраклеточный рецепторный лиганд. В частности, BOHB является агонистом HCA2-рецепторов, они же GPT 109A. Опуская детали, это приводит к подавлению сАМФ (циклический аденозин монофосфат), который связан с производством про-воспалительных цитокинов. Грубо говоря, кетогенная диета обладает противовоспалительным эффектом, что экспериментально подтверждено и есть понимаемый механизм этого эффекта.

Также бета-гидроксибутират является агонистом GPR41 рецептора (он же FFA3). Что подавляет активность симпатической нервной системы, в основном в симпатических ганглиях.

Кетогенная диета и BDNF

Кето-диета усиливает экспрессию нейротрофического фактора мозга (BDNF). То есть способствует пролиферации старых и развитию новых нейронов, синаптической пластичности и синаптических связей. BDNF активирует целую цепочку сигнальных путей, которые способствует здоровью наших нейронов. Подробнее в тексте исследования, а то я боюсь потерять немногочисленную аудиторию, которая дочитала до этого места.

Кетогенная диета и неврологические болезни

Кетоны и развитие ЦНС

Кетоны играют критически важную роль в развитии мозга. Окисление кетонов начинает во время развития плода. Материнское молоко кетогенное, так как содержит большое количество средне цепочных триглицеридов (MCT). Значительная часть энергопотребности мозга младенца «закрывается» кетонами. Блокировка кетогенеза усиливает припадки у щенков крыс.

Кетоны – основной субстрат синтеза жиров в период резкого роста мозга.

Эпилепсия

Эпилепсия включает в себя аберрантную синхронную деполяризацию нейронов ЦНС. Обычно проявляется как пароксизмальные нарушения сознания и моторной функции. Терапевтический механизм кето-диеты во время эпилепсии продолжает быть спорным, не смотря на вековую историю применения.

Кетогенная диета повышает концентрацию GABA и снижает активность глутамата (преобразуя его в GABA). То есть мы говорим о снижении экзитотоксичности (exitotoxicity) глутамата.

Также в эпилепсии играют роль чувствительные к АТФ калиевые каналы (ATP-sensitive potassium channels). Повышенный синтез АТФ в кетозе может воздействовать на эти каналы, влияя на поляризацию мембраны.

Нейроны черного вещества базальных ганглий гораздо реже «выгорали» в присутствии BOHB и ацето-ацетата.

Также кетоны взаимодействуют с PPAR-гамма-2 рецептором, «модной» целью эпилептических разработок.

Болезнь Альцгеймера

Внутриклеточные тау-нейрофибрильные сплетения, накопление амилоид-бета бляшек, смерть нейронов, дисфункция митохондрий, гипометаболизм глюкозы – отличительные гистологические признаки болезни Альцгеймера.

Подавление функции белков дыхательной цепи коррелирует с накоплением амилоидных бляшек.

В общем кетоны частично помогают с этими проблемами. Лучше даже [предполагаю] кетоны + периодическое голодание (аутофагия).

Чуть меньше информации о пользе кетогенной диеты при инсульте, травмах мозга, боковом амилоидном склерозе, болезни Гентингтона, болезни Паркинсона, рассеянном склерозе.

Эффекты кетогенной диеты на ЦНС представлены на рисунке ниже и в выводах.

кетогенная диета

Выводы:

  • Кетоны начинают синтезироваться, когда концентрация ацетил кофермента А превышает возможности цикла Кребса его переработать;
  • Сначала синтезируется ацетоацетат, затем из него получаются бета-гидроксибутират и ацетон;
  • Ацетон перерабатывается печенью или выходит через дыхательные пути, в кето-диете и во время голодания его концентрация не достигает значимых уровней;
  • Кетоны в организме создают гепатоциты и астроциты;
  • Гепатоциты печени производят кетоны, но сами не могут их потреблять;
  • Кетоны подавляют метаболизм глюкозы, дают субстрат для каскадных реакций цикла Кребса, способствуют повышению уровней нейтротрасмиттеров GABA и ацетилхолин;
  • Кетогенная диета способствует экспрессии термогенина и бурению жира;
  • Кето-диета обладает нейрозащитным эффектом и повышает уровень антиоксиданта глутатиона;
  • Изначальное увеличение реактивных видов кислорода и водорода на кето-диете приводит к защитной реакции организма, которая заметно снижает оксидативный стресс;
  • Кетогенная диета повышает общую массу митохондрий по крайней мере в некоторых отделах мозга, но не очень ясно за счет чего (митохондрии дольше живут и меньше «болеют» или их становится больше итд);
  • Кетоны через ацетилирование гистонов влияют на экспрессию генов ДНК; в частности усиливают экспрессию FOXO3 (борьба с опухолями) и супероксид дисмутазу;
  • Кетогенная диета обладает противовоспалительным и анти-стрессовым эффектом;
  • Кето-диета усиливает экспрессию нейротрофического фактора мозга, что способствует здоровым нейронам со здоровыми связями;
  • Материнское молоко кетогенное, и кетоны играют важную роль в нормальном развитии мозга;
  • Кетогенная диета может быть полезная для целого ряда нейродегенеративных заболеваний.

 

 

Поделиться:

Ограничение питания по времени, сравнение голодания и кето-диеты

Ограничение питания по времени – это когда у нас есть окно в 8-12 часов, в которые мы разрешаем себе есть (обычно с утра и до после обеда), затем пьем только воду. При это урезания калорий нет. Это альтернативная стратегия периодическому голоданию и кето-диете.

После своего первого пересказа статьи Вальтера Лонго о голодании, я хотел продолжить его же статьей «Голодание, циркадные ритмы и кормление с ограничением по времени в здоровой продолжительности жизни». Но материала в добавлении к первой статье там было не так много и заметка «зависла». Ситуацию спасла Ронда Патрик, дав развернутые ответы на вопросы на подкасте Тима Ферриса (ссылка на транскрипцию подкаста). Первые же 2 вопроса: «практика применения этой диетной стратегии» и «в чем отличие голодания от кето». Поехали!

Стратегия 16-8 также дает результаты, но 12-12 или даже 8-16 еще лучше.

Ограничение по времени связано с циркадными ритмами. У людей гликемическая реакция на идентичную еду как правило повышается к вечеру. Организм через фоторецепторы (глаза, кожа) получает сигналы о времени суток. Эта информация попадает в супрахиазматическое ядро мозга и в дальнейшем влияет на целый ряд процессов. 10-15% экспрессии наших генов модулируется светом. СХЯ, таким образом, принято считать главным генератором циркадных ритмов организма. Но есть и периферийная регуляция. Например, через еду организм получает периферийные сигналы о времени суток. Так и происходит то самое циркадное несоответствие.

С практической стороны важно то, что в период вечернего голодания мы пьем только воду. Даже ксенобиотики (кофе, например) могут мешать процессу временного голодания.

Прерывать голодание Ронда советует как раз ксенобиотиками.

Окно питания в 9-12 часов и последующее водное голодание дает следующие эффекты:

  • Снижение жировой массы
  • Увеличение сухой мышечной массы
  • Улучшенная толерантность глюкозе
  • Улучшенный липидной профиль
  • Снижение воспаления
  • Больший объем митохондрий
  • Защита от стеатоза печени
  • Защита от ожирения
  • В целом более желаемая экспрессия генов
  • Увеличивается производство кетоновых тел

Пересказ нескольких исследований:

  • 11-часовое окно питания ассоциируется со снижением риска заболевания раком груди и снижением случаев рецидива на 36%;
  • Ранние блюда ассоциируются с большей эффективностью терапий, направленных на похудание, среди пациентов с избыточным весом и ожирением;
  • За каждые 3 часа голодного вечернего времени на 20% снижается гликированный гемоглобин (HbA1C);
  • На каждые 10% увеличения калорий, съеденных после 5 дня приходится 3% роста C реактивного белка (маркер воспаления);
  • Дополнительный дневной прием пищи (вместо вечернего) был связан с 8% падения С реактивного белка.
  • Окно в 12 часов улучшало сон и усиливало потерю веса у людей с нормальным весом.

Отличия голодания от кето-диеты

Голодание приводит к увеличению аутофагии и апоптоза. Для метаболического здоровья это означает очищение от стареющих клеток, белков с неправильной конформацией и прочих побочных продуктов метаболизма. С помощью аутофагии удаляются поврежденные митохондрии (митофагия).

После аутофагии и апоптоза идет массивный прирост синтеза стволовых клеток. Чего нет на кето-диете.

Голодание приводит к биогенезу митохондрий. Кето, напомню, приводит к уменьшению количества патогенных мутаций, но с биогенезом митохондрий кето еще не связали.

Голодание приводит к увеличению NAD+ (или просто NAD). Доктор Патрик упоминает только то, что NAD необходима для починки ДНК. Я бы добавил то, что снижение баланса NADH/NAD+ улучшает питание митохондрий кислородом и снижает псевдогипоксию.

Голодание и кето-диета снижают маркеры воспаления (С реактивный белок, TNFα итд). Но кето-диета обладает большей вариабельностью по сравнению с голоданием. Тут Ронда приводит в пример исследование 2015 года Personalized Nutrition by Prediction of Glycemic Responses. Резюме исследования можно посмотреть на YouTube. Если коротко, но среди людей есть огромная вариабельность в гликемической реакции на те или иные продукты. В видео приводят в пример то, что у некоторый людей суши сильнее поднимают глюкозу в крови, чем мороженое.  Применительно, что у части населения гликемическая реакция на жиры сильнее, чем на простые углеводы. Это связано как правило с генетическими мутациями. Ронда приводит в пример FTO, PPAR-alpha, PPAR-gamma, APOE4.

Также Ронда ссылается на исследование о влиянии кето-диеты на уровень тироидных гормонов у детей-эпилептиков. И говорит о том, что людям с проблемной щитовидной неплохо бы тестироваться во время затяжной кето-диеты. Но мы с вами разбирали, что логика немного другая. Это углеводы приводят к повышенному Т3 и как следствие повышают требования к количеству йода в диете.

Выводы:

  • Ограничение питания по времени – хороший способ подтянуть метаболическое здоровье, не переключаясь на кето и не прибегая к голоданию от суток и более;
  • Ограничение питания по времени – прекрасная стратегия для тех, у кого проблемы с нежелательным течением кето-диеты;
  • Кето-диета + ограничение питания по времени – также отличная идея.
Поделиться:

Аутофагия и диабет

Аутофагия и ее терапевтическое применение для метаболических болезней сейчас не менее актуальны, чем оптимизация функции митохондрий. Напомню, что Нобелевскую премию по медицине в 2016 году получил Осуми Ёсинори за открытие механизмов аутофагии.

Защитная роль аутофагии в β-клетках поджелудочной. Nature просят 8 евро за одну страницу обобщения материалов трех статей. Имеют право, но вот ссылка на статью на Sci-Hub.

Цитата, чтобы задать тон заметке: «Много лет предполагалось, что сахарный диабет 2 типа (далее СД2) вызывается невосприимчивостью к инсулину, и невосприимчивость к инсулину связывали с ожирением. Проблема этой модели в том, что у 80% пациентов с патологическим ожирением никогда не развивается СД2, они банально адаптируются к невосприимчивости инсулину соответствующим увеличением секреции этого гормона для поддержания нормального уровня сахара в крови. Как СД2 развивается у людей с невосприимчивостью к инсулину, таким образом, требуем прояснения.» Согласитесь, что отлично.

Аутофагия крайне важна для поддержания функции β-клеток и противодействия диабету. Отложения амилоидных островков – отличительная черта СД2 у человека. Внутриклеточные олигомерные формы островков амилоидных полипептидов (далее ОАПП) токсичны для β-клеток.

Внутриклеточный амилоид считается довольно инертным. Человеческие отложения ОАПП расчищает аутофагия. Мышиный же, например, разлагает протеаза (фермент). В исследованиях используют трансгенных мышей, с человеческими ОАПП. Их агрегация сам по себе не приводит к СД2. Когда у мышей одновременно подавлена функция β-клеток, наступает диабет, апоптоз и смерть β-клеток поджелудочной.

Опуская некоторые подробности, аутофагия помогает расчищать клетки от амилоидов неправильной конформации (misfolding). Я сознательно осторожен с мисфолдингом, иначе мы уйдем в нейродегенеративные болезни (например, Паркиноса), где накопление белков неправильной конформации – известная проблема.

Ученые закончили тем, что сейчас пытаются найти биомаркер аутофагии, который будет коррелировать с функцией β-клеток.

Что усиливает аутофагию β-клеток? Метформин и некоторые другие лекарства, голодание и кето-диета (хотя последнее обсуждается), ресвератрол (хотя к нему есть вопросы) и подобные вещества, закаливание. Но давайте посмотрим, что есть у науки.

Фармакологическое модулирование аутофагии: терапевтический потенциал и сохраняющиеся препятствия – свежайшая статья в Nature.

Я не хочу вдаваться в детали аутофагии: это займет много времени и мои цели несколько другие – обозначить важность процесса. Но это исследование дает небольшую вводную по аутофагии и суммирует значительную часть способов воздействия на этот процесс и клиническое применение последующих эффектов.

аутофагия

Настоятельно рекомендую статью к прочтению интересующимся. Узнаете в каких заболеваниях аутофагия играет ту или иную роль. И как это можно модулировать фармакологически.

Поделиться:

Эритритол, пентозофосфатный путь и ожирение

В майском PNAS вышла статья «Эритритол – метаболит пентозофосфатного пути, связанный с увеличением жировой массы у молодых людей».

Пару месяцев назад я писал небольшую заметку о пентозофосфатном пути метаболизма глюкозы (PPP). Напомню основные вещи: PPP – альтернативный путь метаболизма глюкозы, в ходе которого образовываются пятифосфатные сахара, их самые восстановленные формы. Например, D-рибоза, которая восполняет гликоген как минимум не хуже глюкозы. Также 5P-формы являются компонентами АТФ, ДНК, РНК и прочих важнейший белковых структур. Вместе с 5P-сахарами образуется мощнейший восстановитель NADHP.

Джек Круз спекулировал, что именно пентозофосфатный путь и D-рибоза позволяют Виму Хофу бегать марафоны без подготовки: как в пустыне, как и за полярным кругом. Небольшое количество источников говорит о том, что PPP активирует стресс: кислород, УФ-спектр, холод, возможно что-то еще.

Эритритол – алкогольный сахар, такой же сладкий как глюкоза, но почти не усваивающийся организмом. Почти нет калорий, нет влияния на гликемический индекс. За что и любим ЗОЖ-сообществом. Пока вернуться к статье.

Статья посвящена биомаркерам в крови подростков, которые изменяются при поступлении в американские ВУЗЫ и корреляция изменений этих биомаркеров с увеличением жировой массы ребят. Это лонгитюдное исследование, которое длилось несколько лет.

В исследовании говорится, что вес 75% ребят претерпевает изменения во время поступление в первые пару лет обучения – полнеют.

Молодых людей разделили на 2 фенотипические группы по уровню гликированного гемоглобина. HbA1c > 5,05% и HbA1c < 4,92%. Со временем смотрели какие маркере биохимии крови соответствовали росту жировой массы.

Предыдущие подобные исследования отмечали изменения в липопротеинах, маркерах воспаления, уровне жировых кислот, прекурсорах гликолиза и, что интересно, концентрации BCAA. Все верно, статистически большая концентрация BCAA соответствовала большему набору жира. Хотя корреляция была слабой. И важно, что это не означает того, что BCAA приводят к ожирению. Это значит, что у полных людей концентрация BCAA будет немного выше. Это же они нашли и в этом лонгитюде, но корреляция была очень низкой, статистически незначимой.

Эдогенный эритритол

Исследователи доказали с помощью изотопных меток, что эритриол синтезируется эндогенно в ходе пентозофосфатного пути метаболизма глюкозы!

Эритритол из пентозофосфатного пути

И что в «гипергликемической» группе концентрация метаболитов эритритола была в 13,4 раз выше! Хотя лактат и фруктозы были заметно ниже.

Выводы исследователей

Что эритритол может быть как-то связан с ожирением. Нужны дополнительные исследования.

Моя критика

Напоминает ситуацию с атеросклерозом и холестерином. Приехали на пожар, увидели пожарных и решили, что пожарные приводят к пожару. Хотя они его тушат. То есть рост концентрации эритритола при росте жировой ткани не говорит о том, что это именно эритритол (который на 90% просто выходит с мочей) приводит хоть как-то к ожирению.

Моя догадка

Пентозофосфатный путь активируется стрессом. Повышенная концентрация глюкозы в крови, вне всяких сомнений, хронический стресс для организма, и совсем не горметический (не приводящий к ответной положительной реакции организма).

Для меня это скорее знак того, что у организма есть ряд встроенных «защит» от метаболических проблем, часть из которых мы не знаем или знаем очень плохо.

Что мы можем синтезировать эритритол эндогенно в ходе PPP – это очень интересно. Но делать из этого выводы о том, что эритритол может способствовать ожирению – для меня очень нелогично.

Поделиться:

Жиры и глюкоза, глюкоза. Влияние диеты на здоровье митохондрий

В предыдущих заметках мы разобрались с тем, как метаболизм жиров и глюкозы отличается на уровне ЭТЦ митохондрий. Углеводы драйвят NADH-метаболизм через Комплекс I. Жиры «качают качели» в сторону FADH2 и Комплекса II.

Что не менее важно, жиры и глюкоза – это именно качели. Метаболизм жиров приводит к обратимой деградации Комплекса I, тем самым помогая метаболизму себя с помощью обратного потока электронов (reverse electron transport, RET) и супероксида О2—; и одновременно подавляю поток электронов через NADH и Комплекс I.

Теперь давайте посмотрим, что будет если мы будем пытаться стимулировать Комплекс I и II одновременно и подумаем на тем, чем это обернется для наших митохондрий.

В этом нам поможет заметка Петро Добромыльского Protons: Superoxide. И исследование из этой заметки за авторством Мюллера и коллег: «High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates».

Авторы этого исследования работали с изолированными митохондриями. Ни цитоплазмы, ни цикла Кребса, ни других клеток, ограниченное время функционирования и так далее. Нашим целям это помогает тем, что они вынуждены были снабжать изолированными митохондрии субстратами, напрямую стимулирующими поток электронов через Комплекс I и Комплекс II.

Малат и глутамат для NADH и Комплекса I, сукцинат для FADH2 и Комплекса II. На выходе они измеряли выделения митохондриями реактивного вида кислорода H2O2, его гораздо удобней измерять, чем супероксид О2—.

Малат+глутамат (Комплекс I) давали 30 (пмоль * мин-1 * мг-1) H2O2;

Сукцинат (Комплекс II) давай 400 пмоль H2O2;

Сукцинат+малат+глутаман (Комплексы I и II, думайте о жире и глюкозе вместе) давали 2000 пмоль H2O2.

Заметки исследователей

Глутамат стимулировал генерацию H2O2, в то время как малат подавлял. Это связано с функцией малата в цикле Кребса. В рамках выбранной темы не буду останавливаться. Есть в самом исследовании и в тексте Добромыльского.

In vivo сукцината не так уж и много в цикле Кребса. В данном случае речь шла о супрафизиологическом количестве сукцината. То есть в реальности жиры (как мы выяснили в прошлой заметке) будут приводить к RET и О2—, но в меньшем количестве, чем в исследовании.

Для генерации большого количества реактивных видов кислорода через одновременную стимуляцию Комплекса I и II, не нужно большого количества концентрации субстратов. Все вполне укладывается в физиологические рамки.

Комментарий Петро

Сводится к тому, что речь идет об обжорстве. Цикл лимонной кислоты дает нам 3 NADH и 1 FADH2 из одной молекулы ацетил КоА. Петро про это явно не пишет, но подразумевается, что избыток пищи сам по себе (обжорство при постоянной доступности углеводов для современного мира) может привести к таким последствиям.

Добромыльский привязывает этой с нейронами. С его точки зрения с гипергликемией организму сложно спорить. И при избытке глюкозы нейроны будут вынуждены потреблять глюкозу вместо лактата и кетонов. Автоматически попадая в супероксидную ловушку.

Мое мнение

Сначала я должен пояснить качели пользы/вреда реактивных видов кислорода (супероксида в частности). Они нужны для нормального функционирования митохондрий. Биогенеза митохондрий не будет без супероксида. Но правило too much of a good thing is bad работает и с супероксидом. ДНК митохондрий (мтДНК) в отличие от ДНК клетки гораздо хуже защищены от оксидативного стресса. И если некоторое количество «кислородного стресса» может стимулировать биогенез митохондрий, то большим количество реактивных видов кислорода митохондрии не справиться – они ее рано или поздно разрушат.

То есть комбинация глюкозы и жиров убивает наши митохондрии огромным количеством реактивных видов кислорода.

В реальной митохондрии все будет усложняться гормонами, в частности инсулином. ПНЖК, как вы помните, делают клетку более чувствительной к инсулину (при большом количества жиров нам нужна физиологическая невосприимчивость инсулину). В клетку проникает еще больше глюкозы, чем это было бы без жира.

Пирожки в масле, беляши, «картошка» с маргарином и прочее мучные и сладкие радости убивают наши митохондрии генерацией супероксида.

Одно из основных правил здорового питания для меня, таким образом, очень простое. Углеводы+белки или белки+жиры. Комбинации углеводов и жиров я стараюсь избегать. Как и частого обжорства углеводами.

Grand Finale

Метаболизм жиров деградирует Комплекс I. Таким образом не имеет недостатков, связанных с обжорством глюкозой и глюкозой/жирами. То есть жиры не могут очень быстро убить нам митохондрию и клетку.

Но при этом метаболизм жира даст нам дополнительно количество реактивных видов кислорода. Что может быть и хорошо, и плохо. Все зависит от контекста.

 

P.S. Я упустил тот момент, что для генерации супероксида нужен высокий потенциал мембраны. Но это также связано с обилием восстановленного CoQ и невозможностью транспортировки электронов парой CoQ в Комплекс III.

 

Поделиться:

Влияние метаболизма жиров на Комплекс I дыхательной цепи переноса электронов

Давайте начнем с того, чем закончили в прошлый раз. Глюкоза «предпочитает» Комплекс I ЭТЦ митохондрий, и ее метаболизм генерирует NADH/FADH2 в пропорции 5:1. Жиры стимулируют поток электронов через Комплекс II и похожие структуры, и генерируют NADH/FADH2 в пропорции примерно 2:1. Не забываем при этом, что FADH2 восстанавливает CoQ до CoQH2.

С метаболизмом жиров нам поможет разобраться статья Guaras et al “The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency”.

Резюме:

  • Путь электронов через FADH2 приводит к восстановлению CoQ до CoQH2;
  • Высокое соотношение CoQH2/CoQ (восстановленного коэнзима Q по отношению к обычному) приводит к тому, что электроны не могут быть перенесены в Комплекс III, возникает обратный поток электронов (RET, reverse electron transport);
  • Этот обратный поток электронов (RET) приводит к созданию супероксида О2—;
  • RET и генерация реактивных видов кислорода приводит к частичной [и обратимой] деградации Комплекса I;
  • Подавление функции Комплекса I (NADH) и большая выраженность Комплекса III являются адаптацией организма к метаболизму жиров.

Невероятно информативная статья. Сложно даже что-то разжевывать еще более. Но давайте чуть более «помусолим» отдельные пункты.

Восстановление CoQ – часть метаболизма FADH2 (вспоминайте цикл Кребса). Если у нас много восстановленного CoQ и мало его окисленной пары, то снизятся объемы переноса электронов к Комплексу III.

Раз электроны не смогут двигаться «вперед», то они пойдут «обратно» по электронной цепи. Создавая при этом супероксид О2— (не обычный кислород О2, а отрицательно заряженный и очень реактивный ион). О2—  будет восстанавливать супероксиддисмутаза до Н2О2.

Соответственно, обратный поток электронов и реактивные виды кислорода начнут деградацию Комплекса I. Что «усилит» метаболизм через FADH2 (из жиров, грубо говоря).

Важно заметить то, что это физиологический, а не патологический процесс. Так организм в нормальных условиях регулирует метаболизм в зависимости от диеты.

Реактивные виды кислорода очень важны для нормальной функции митохондрий. Но этот как раз тот момент, когда разница в лекарстве и яде в дозировке.

Из интересных вещей хочу заметить, что гипоксия (например) продолжительная гипоксия восстанавливает Комплекс I. Вспоминайте о пранаямах.

Авторы не упоминают, что именно они подразумевают под деградацией Комплекса I. Поэтому не совсем ясно какой временной лаг будет оптимальный при переключении метаболизма с жиров на углеводы. Например, вряд ли окисление цистеиновых белков можно быстро восстановить. Очевидно, переключение не будет «мгновенным» и резкое переключение с кето на глюкозу не стоит рекомендовать.

Выводы для любителей кето:

  • Метаболизм жиров приводит к обратимой деградации Комплекса I;
  • Это не патология, а физиологическая адаптация организма к метаболизму жиров;
  • Метаболизм жиров (судя по всему) будет связан с повышенным уровнем генерации реактивных видов кислорода (в данном случае плохо и хорошо зависит от контекста);
  • Первичная кето-адаптация может быть долгой и мучительной (допустим, для веганов), так и резкая обратная адаптация к глюкозе после продолжительного кето может иметь негативные последствия.

Дальше я предлагаю следующее. Мы все знаем, что комбинация жиры + глюкоза вредит метаболическому здоровью. Давайте в 3-ей части посмотрим, что будет происходить, если мы «кормим» Комплексы I и II одновременно.

Поделиться:

Путь жиров и углеводов в дыхательной цепи митохондрий

Это заметка является вводной по отношению к двум следующим. В тоже время она подразумевает, что вы имеет общие представления о дыхательной переноса электронов (Electron transport chain, ETC, ЭТЦ) и о цикле лимонной кислоты (цикл Кребса, ЦТК).

В данном случае мне удобнее перевести уже готовый материал Петро Добромыльского. Я позволю себе вырезать несколько предложений. Тех, которые имеют лишь опосредованное отношение к предмету, но требуют чтения других его заметок и/или дополнительных пояснений.

Резюме: Комплекс I и Комплекс II – отдельные маршруты в дыхательной цепи переноса электронов. Глюкоза предпочитает Комплекс I, жир предпочитает Комплекс II. Теперь расширенная версия.

Вот неплохая смеха ЭТЦ в виде диаграммы митохондрии, взята из Википедии.

Комплекс АТФ синтазы, показанный в верхнем левом углу диаграммы митохондрии, позволяет протонам протоном снаружи внутренней мембраны митохондии проникать назад в матрицу, создавая АТФ в процессе. [текст пропущен] В настоящее pH и электронный градиент поддерживаются электронной транспортной цепью. ЭТЦ переносит положительно заряженные протоны наружу митохондриальной матрицы для поддержания [H+] градиента, который рассеивается во время производства АТФ.

На диаграмме вы можете увидеть две версии ЭТЦ, поддерживаемой циклом Кребса. В правом верхнем углу молекула NADH снабжает электронами Комплекс I. Комплекс I выкачивает какое-то количество протонов, передает электроны пулу коэнзима Q (CoQ, Q на диаграмме) переносчиков электронов, которые передают их в комплекс III. Комплекс II не задействован. Пул CoQ – мобильный резервуар шаттлов восстановления (переносчиков электронов), которые передают электроны Комплексу III.

Во второй версии, показанной в нижней части, сукцинат снабжает Комлпекс II. Комплекс II – фермент сукцинатдегидрогеназы цикла лимонной кислоты. Он встроен в стену внутренней мембраны митохондрий и напрямую передает электроны пулу CoQ, Комплекс I не задействован. Еще одно отличие состоит в том, что Комплекс II не выкачивает H+ протоны.

Выкачивание протонов во время переноса электронов через комплексы III и IV не зависит от входной точки в ЭТЦ. Все, снабжающее пул CoQ [электронами] снабжает по цепочке Комплекс III и Комплекс IV. Как правило.

В итоге у нас есть цикл Кребса, конвертирующий ацетил-КоА в тонну NADH для Комплекса I и щепотку FADH2 для комплекса II.

FADH2 полон сюрпризов. Он встроен глубоко в фермент сукцинатдегидрогеназы и никогда, насколько я понимаю, не покидает ее. Он [Комплекс II] переключается между состояниями FAD и FADH2 во время цикла лимонной кислоты и по сути является мостом для передачи более эффективного окисления сукцината восстановлению пары CoQ.

Другой маршрут ЭТЦ, о котором часто забывают, это электропереносящий флавопротеин-дегидрогеназа (ETFD), у которого нет подходящего запоминающегося обозначения. ETF-дегидрогеназа находится на внутренней мембране митохондрий и передает электроны паре CoQ, также как и Комплекс II, не выкачивая протонов. ETFD получает электроны от FADH2 электронопереносящего флавопротеина, который, к счастью, получает электроны от FADH2 ацил-КоА-дегидрогеназы, первого энзима бета-оксидации. Назад к «своей территории». Глубокий выдох.

Таким образом бета оксидация жирных кислот попадает в ЭТЦ через «подобные Комплексу II» мембранный фермент. Который использует для этого FADH2 и также создает небольшое количество NADH.

Таким образом у нас есть 2, независимые от Комплекса 1, точки входа в пару CoQ.

Ремарка. Есть и третий, если мы считаем глицерин-3-фосфат-дегидрогеназу. Четвертый, если мы считаем глицерин-3-фосфат-оксидазу. Может быть и более. Но давать не будем проще и остановимся на двух… [пропущенный текст]

Таким образом цикл Кребса пускает немного электронов через FADH2 в Комплексе II в сравнении с кем количеством [электронов], которое дает NADH в Комплексе I. Гликолиз еще более сконцентрирован на Комплексе I, и добавляет еще больше NADH к генерации ацетил-КоА. Однако бета-оксидация снабжает [электронами] FADH2 (ETFD), со сравнительной меньшим снабжением NADH от бета-оксидации, в дополнении к ацетил КоА. Естественно, ацетил-КоА (цикл Кребса) [всегда] создает одинаковое соотношение NADH/FADH2.

Подсчеты вы можете увидеть у Лукаса Тафура тут. Цитата:

1 molecule of glucose produces:

2 Acetyl CoA
6 CO2
10 NADH+
2 FADH2

Ratio NADH+:FADH2 = 5:1

ATPs produced from complete oxidation: 30-32 (assuming 2.5 ATP from NADH+ and 1.5 ATP from FADH2)

1 molecule of palmitate produces:

8 Acetyl CoA
16 CO2
31 NADH+
15 FADH2
Ratio NADH+:FADH2 = 2:1 (depending on carbon length)

ATPs produced from complete oxidation: 108 (assuming 2.5 ATP from NADH+ and 1.5 ATP from FADH2)

Как видите, глюкоза дает 5 молекул NADH за каждую FADH2, в то время как жир дает только 2 молекулы NADH за каждую FADH2.

Глюкоза использует Комплекс I значительно больше жира. Жир предпочитает похожие на Комплекс II пути, получая FADH2 от ETFD, также как сукцинатдегидрогеназа (Комплекс II) получает некоторое количество FADH2 от Ацетил-КоА (цикла Кребса).

Обе точки входа FADH2 делают одну и туже вещь для пары CoQ, они восстанавливают ее. Восстановленный пул CoQ обладает значительными последствиями для ЭТЦ и генерации свободных радикалов.

Я предпочитаю есть жир. Но что это делает с комплексом I.

Судя по всему, очевидного ответа нет.

Поделиться:

Эволюция, углеводы и функция щитовидной железы

Как вы знаете, уровень Т3 в кето-диете падает. Это, скажем так, является поводом для некоторой озадаченности для LCHF-публики. Что значит снижение Т3, плохо ли это или хорошо – этими и подобными вопросами логично задаваться в подобной ситуации.

Иногда так замечательно выходит, что смена перспективы решает одни проблемы и актуализирует другие. Это и сделал Вольфганг Копп в статье «Питание, эволюция и уровень тироидных гормонов – связь с йододефицитными заболеваниями?»

Вводные:

  • Уровень гормонов щитовидной железы и в частности Т3 зависит от наличия углеводов в диете;
  • Высокоуглеводная диета ассоциируется со значительно более высокими показателями Т3 по сравнению с низкоуглеводной диетой;
  • Наши предки до эпохи земледения ели значительно меньше углеводов (хотя в желудках древних людей находят пшеницу, что тоже важно заметить) и как следствие обладали меньшими значениями Т3;
  • Добавление значительного числа углеводов к низкоуглеводной диете ассоциируется со значительным увеличением концентрации Т3;
  • Большая концентрация Т3 ассоциируется с большими потребностями в йоде; во многих регионах Мира потребность йода превышает доступность;

 

Уровни щитовидных гормонов и питание:

  • Во время голодания концентрация Т3 в крови снижается до плато в 50% примерно в течение 4-6 дней, в это же время уровень [неактивного] изомера rT3 (reverse T3) повышается, а уровень Т4 остается неизменным;
  • Исследования показали, что Т3 снижается не из-за голодания, а из-за снижения углеводов в диете;
  • Рефид белками и/или жира не имеет значительного эффекта на уровень Т3; а около 160 грамм глюкозы полностью восстанавливают уровень Т3;
  • Низкоуглеводная диета ассоциируется с более низкими уровнями Т3; меньше 20 грамм углеводов – Т3 снижается на 50% по сравнению с контрольной группой;

Резкое снижение Т3 на низкоуглеводном питании НЕ связано со снижением поглощения кислорода и с симптомами функционального гипотериодизма (непереносимость холода, сухая кожа, сонливость). Не смотря на сниженные уровни Т3, базовый уровень ТТГ (TSH) в норме или даже немного снижен. Отсутствие клинических симптомов и ТТГ в норме или немного сниженный говорят о том, что организм не страдает из-за снижения Т3 на низкоуглеводной диете.

Причины изменения уровней гормонов щитовидной железы при добавлении углеводов недостаточно ясны.  Судя по всему, пониженный Т3 связан со сниженной периферийной конвертацией Т4 в Т3: в «обычных» условиях заметная часть Т4 (30-40%) периферийно конвертируется в Т3. И в период углеводного голодания периферийный синтез переключается с Т3 на rT3. Изомер rT3 не обладает значим гормональным действием, поэтому получаем общее снижение гормональной активности Т3. При добавлении углеводов в диету начинается периферийный синтез активной Т3 формы.

До эпохи земледения люди зачастую питались низкоуглеводной диетой. Допустим во время ледниковых периодов диета людей не превышала 10 грамм углеводов в день (ссылки на каждое заявление в оригинале присутствуют). В связи с этими историческими данными «неподобающим» уровень Т3 можно считать современный, а не тот, что мы имеем во время голодания и на кето-диете.

Связь с йододефицитными заболеваниями?

Копп предлагает следующее объяснение

С началом эпохи земледелия уровень Т3 человек мог вырасти примерно в 1,5 раза. Это создает дополнительную потребность в йоде. Которая не всегда может быть закрыта нутриентами. Автор предполагает, что изначально уровне Т3 в почте, вероятно, хватало, чтобы обеспечить более низкую потребность в йоде. С началом земледелия и истощением почв уровень йода из локальной диеты часто недостаточен. Отсюда и заболевания.

Выводы для поклонников кето-диеты:

  • Кето не убьет вашу щитовидную железы;
  • Это не кето «снижает» уровень Т3, а присутствие большого количества углеводов в диете поднимает Т3;
  • Поднятый Т3 увеличивает потребность в поступающем с диетой йоде; в тоже время сниженный Т3 на кето понижает потребность в йоде.

Как я и говорил, смена перспективы может многие проблемы поставить «с ног на голову».

Поделиться:

Кетогенная диета и рак, глюконеогенез и кортикостероиды

Oliveira et al вы написали обзорную статью о применении кето-диеты для лечения рака. Из 1356 исследований было выбрано только 14. Авторы выбирали только профильные исследования, только на людях и так далее. В этих 14 исследованиях «кто в лес, кто по дрова», потому статья Оливьеры и коллег сама собой «выплыла» в сторону того, как надо бы проводить подобные исследования. Тем не менее, пару моментов оттуда почерпнуть можно.

Напомню базовую вводную. Отто Варбург (Otto Warburg) открыл, что большинство (важно, что не все) раковых клеток предпочитает ферментировать глюкозу до лактата вне зависимости от наличия кислорода. Этот процесс неэффективен (2 АТФ и 1 молекулы глюкозы вместе 36, которые можно получить через оксидацию глюкозы в здоровой митохондии) и требует большого количества экзогенной глюкозы. Все вместе создает благоприятную среду для развития опухолей.

В одном из исследований кето-диета привела к негативному результату. Это была глиобластома. Данное и еще одно исследование говорят об экспрессии кетогилических энзимов  в злокачественной глиоме. Как минимум с раком мозга в кето-диете надо быть аккуратнее.

В целом кето-диета имеет положительный или нейтральный эффект на развитие раковой опухоли.

Schoeder et al показали, что 5 дней кето-диеты приводили к снижению лактата в клетках опухоли, что связано с более положительным прогнозом для больных. Но исследование плохо раскрывает диету, не имеет контрольной группы и в целом не самое качественное.

Заинтересовало меня то, что авторы вскользь сказали о том, что стероиды могут изменять метаболизм глюкозы и глюконеогенез, что может влиять на итоги исследований. Pubmed и Google подсказали, что кортикостероиды усиливают глюконеогенез (есть и другие исследования/материалы). То есть в теории хронический прием кортикостероидов для противовоспалительных целей и/или серьезный курс этих же препаратов, вроде бетаметазона (Дипроспан® и другие марки), могли хронически усиливать ваш глюкогеонегез. Сразу вспомнил о Д.С., у которого без метформина на кето не было привычной многим «прухи»: то есть легкой эйфории (хорошего настроения) и прилива сил.

Состояние исследований таково, что текущих исследований о кето-диете и раковых опухолях много, то опубликованные материалы очень разношерстны по методологии и качеству. Можно смело ждать 3-5 лет (или даже больше) до следующего качественного скачка информации по теме.

Есть еще темы: кето + химиотерапия, кето + радиотерапия. Как кето (и закаливание) способствует эффективности этих процедур и восстановлению после них.

Поделиться: