Стволовые клетки и митохондрии

Стволовые клетки справедливо вызывают большой интерес. Jesaul поднимал интересный вопрос: как «заставить» ткани регенерироваться, то есть стволовые клетки дифференциироваться. Конкретных ответов не будет, но более общие закономерности рассмотрим на примере статьи Mitochondria and the dynamic control of stem cell homeostasis.

Логика довольно простая:

  • Митохондрия – «энергостанция клетки» с высоко мутагенным и небольшим набором ДНК (мтДНК), кодирующим белки дыхательной цепи, которые создают АТФ;
  • Митохондрия – это сенсор окружающей среды, позволяющий организму чутко реагировать на изменения в окружающей среде;
  • Плурипотентные стволовые клетки (PSCs) – это предки как зрелых стволовых клеток (hematopoietic stem cells, HSCs, mesenchymal stem cells, MSCs, neural stem cells, NSCs итд), так и предки всех клеток в принципе;
  • Стволовые клетки могут быть в двух состояниях:
    • Самовоспроизведение;
    • Дифференциация (сначала в зрелые подвиды, затем в клетки).
  • Как несложно догадаться, митохондриальные сигналы играют очень важную роль в дифференциации (и смерти) стволовых клеток;
  • Одновременно с этим функции митохондрий могут подчиняться общим задачам клетки.

Давайте договоримся, что если не указано иное, то речь идет о PSCs, самом общем предке всех стволовых клеток.

http://whenwaterwaseverywhere.com/?x=soft-viagra-mail-order-usa Стволовые клетки и глюкоза

Митохондрия дает нам возможность окислительного метаболизма, который позволил существовать всему многообразию сложной многоклеточной жизни.

Нюанс в том, что http://whenwaterwaseverywhere.com/?x=viagra-pills-buy-online-purchase стволовые клетки полагаются на гликолиз как на основной источник энергии. И практически не используют окислительный метаболизм. Объяснить это очень легко. Окислительный метаболизм всегда подразумевает реактивные виды кислорода, который могут нанести урон ДНК стволовой клетки. Нарушение целостности ДНК (допустим, разрыв двойной спирали и инверсионная «склейка», задом наоборот) PSCs может привести патологии клеток, получаемых в результате дифференциации.

Также в заметке о глюкозе я писал, что пути метаболизма глюкозы не ограничиваются гликолизом (анаэробный процесс, с продуктами в виде пирувата, АТФ и NADH). Альтернативный путь метаболизма глюкозы – пентозо-фосфатный путь (PPP), в ходе которого мы получаем пяти-углеродные (C:5) сахара, которые являются структурными компонентами ДНК/РНК, а также получаем NADPH, который тратится в реакциях восстановления.

Стволовые клетки

В итоге получаем, что упор на глюкозу дает нам поддержание целостности ДНК за счет: отсутствия реактивных видов кислорода, пентозо-фосфатному пути. И не надо забывать, что углеродные основы пирувата (C:3) могут быть утилизированы самым широким образом (синтез амино-кислот, ацетил-коА, липидов итд).

http://it-farmacia.com/informazioni-su-viagra.html Стволовые клетки и смерть

Напрашивается очевидная параллель между клетками рака и стволовыми клетками. Разница в том, что раковые клетки «отказываются» умирать и стараются выжить, а ошибка в ДНК стволовых клеток может быть плачевной для организма. Поэтому safe online pharmacy for clomid стволовые клетки очень чувствительными к сигналам клеточной смерти, запускающих апоптоз.

Сигналы апоптоза могут быть внешними (что-то связывается с рецепторами мембраны клеток) и внутренними (высвобождение цитохрома ц митохондриями). Стволовые клетки занимаются митохондриальными праймингом. Приоритизируют сигналы апоптоза, исходящие от митохондрий.

На морфологии митохондрий подобные задачи также отражаются. Форма не такая вытянутая, как у зрелых митохондрий, почти нет крист с дыхательными комплексами для окислительного фосфорилирования, сильнее выражены белки, связанные с апоптозом.

Отличия от раковых клеток очевидны: стволовые клетки могут дать богатое потомство или воспроизводить себя – им важно убедиться в том, что клеточное потомство будет здоровым, ради чего готовы погибнуть в любой момент. Раковые клетки хотят лишь выжить любой ценой и к сигналам клеточной смерти они стараются быть нечувствительными.

Митохондрии и стволовые клетки

Мы уже разобрались с тем, что митохондрии важны для PSCs, хочется теперь понять какие клеточные сигналы, связанные с митохондриями, могут повлиять на стволовые клетки.

Кислород – это очевидные ответ. Кислород (и реактивные виды кислорода) играет важную роль в самообновлении и клеточной дифференциации. Например, реактивные виды кислорода могут активировать nucleus respiratory factor 2, что вызовет дифференциацию стволовых клеток. Даже для активации HIF-1a (состояния гипоксии) митохондрии кластеризуются вблизи ядра.

Кальций – второй очевидный ответ. Кальций способствует выработке АТФ в процессе OXPHOS. Его эффлюкс может привести к метаболическому кризису и разбуханию митохондрий, а его избыток может привести к открытию пор митохондрий и высвобождению смертоносного цитохрома Ц.

Метаболиты цикла Кребса – куда менее очевидные ответ.

Цитрат может покинуть митохондрию, быть восстановлен до ацетил-коА в цитозоле и влиять на ацетилирование гистонов ДНК. Соответственно, и на выраженность генов.

α-кетоглюкорат, попадая в ряд, используется Ten-Eleven Translocation белками для метилирования ДНК (а значит и для подавления транскрипции участка). Также α-кетоглюкорат используется для деметилирования гистонов. Гипометилирование ДНК – известные признак PSCs, это необходимо для поддержания плурипотентности клетки.

NAD+ > Сиртуины. Известная нам по кето метаболическая ось приводит к деацетилированию ДНК и silencing транскрипции ДНК.

AMPK – Аденозин монофосфат протеин киназа. Фермент, который активирует избыток АМФ, он же недостаток АТФ. АМПК также способствует плурипотентности PSCs.

Итог. Я не обещал конкретных решений. Хотя для особо увлекающих темой ЗОЖ направления уже могут быть понятны.

Поделиться:

Тиреоидные гормоны и метаболизм жиров

Тиреоидные гормоны (щитовидной железы) – известный регулятор липидного метаболизма.

Direct effects of thyroid hormones on hepatic lipid metabolism

При помощи приведенной свежей статьи в Nature хочется более подробно взглянуть на эту тему. Речь пойдет преимущественно о процессах в печени

Т3 и Т4 обладают прямыми [и непрямыми] эффектами на холестерин и синтез жировых кислот. Повышенные уровни LDL и HDL могут быть ассоциированы с гипотиреозом, а сниженные – с гипертиреозом. Высокие дозы Т3 ранее использовали для похудания, но пришлось прекратить из-за серьезных нежелательных явлений. Сейчас левотироксин иногда используется офф-лейбл для похудания.

Способы воздействия щитовидных гормонов на метаболизм жиров:

  • Транскрипторная регуляция;
  • Пост-трансляционная модификация (PTM);
  • Влияние на концентрацию метаболитов;
  • Влияние на энергетический статус в клетке

Транскрипторная регуляция (ядро) подразумевает наличие рецепторов (THR) где-то в ядре. Благо гидрофобность гормонов позволяет позволяем им проникать в ядро клетки. Гормоны щитовидной железы могут не ограничиваться «профильными» рецепторами, могут связываться и с другими рецепторами (например, с FOXO1, forkhead box protein O1), могут связываться с другими белками (в том числе ферментами), могут участвовать в сигнальных клеточных каскадах.

Рецепторы имеют две изоформы: THRα и THRβ. Обе присутствуют в большинстве тканей, но THRβ в большей степени выражен в печени, а THRα в сердце.

Тиреоидные гормоны стимулируют липолиз из запасов жира в белой жировой ткани (WAT) и пищевых источников для создания свободных жировых кислот, которые являются основным источником липидов для печени. Также щитовидные гормоны оказывают влияние на мембранные транспортные белки (FATPs, L-FABPs, CD36), через которые жировые кислоты попадают в печень. Транспортные белки вполне успешно регулируются TH-рецепторами.

Тиреоидные гормоны

De novo липогенез – это создание триглицеридов из пирувата (продукт гликолиза) при избытке глюкозы в диете. Также липогенез (но уже не de novo) может начинаться с циркулирующих и внутриклеточных жировых кислот. Тиреоидные гормоны способствуют de novo липогенезу (из глюкозы).

Противоречие «одновременной» стимуляция липогенеза и липолиза (мы знает, что одновременно организм такого не даст сделать, это «пустой» метаболический цикл) поясняется на рисунке выше. При избытке углеводов в диете (лето), как мы знаем, растет Т3, что логично связано с задачей запасания жира на период зимнего голода/спячки. Зимой же щитовидные гормоны стимулируют липолиз и кетогенез, как следствие доставку энергии до тканей/мозга в виде VLDL и кетонов.

Не смотря на стимуляцию липогенеза, во время гипертиреоза мы получаем похудание даже на высоко углеводной диете. Так как метаболический уровень превышает синтез триглицеридов.

Тиреоидные гормоны стимулируют липофагию и аутофагию в печени.

Щитовидные гормоны ап-регулируют число и активность пероксисом (органеллы, которые «откусыывают» по 2 углерода от длинноцепочных жировых кислот и «справляются» с образовывающимися в процессе реактивными видами кислорода).

Переходя к митохондриям, очевидно, что тиреоидные гормоны склоняют наши энергостанции к оксидативному метаболизму. За счет активации PGC-1α и (ненапрямую) SIRT1 мы задействуем ось PGC-α1 > NRF1 > mtTFA. Таким образом гормоны щитовидной железы активируют бета-оксидацию как на уровне ДНК, так и на уровне мтДНК.

Ограничивающий скорость бета-оксидации фермент карнитин O-палмитоилтрансфераза 1 (CPT1) (еще точнее его печеночная изоформа CPT1-Lα) стимулируется щитовидной.

Тиреоидные гормоны «объединяют» (couple) реакции липофагии с аутофагием митохондрий, поврежденных реактивными видами кислорода.

Активация бета-оксидации означает кроме всего прочего две вещи: активацию синтеза холестерина (для создания гормонов же) и активацию синтеза кетонов (как условно конечно продуктов бета-оксидации жиров).

В тоже время периферийный холестерин (LDL) конвертируется в HDL и возвращается в печень через так называемый reverse cholesterol pathway. Последим этапом «возврата» периферийного холестерина будет секреция желчи. Таким образом, тиреоидные гормоны обладают механизмом снижения холестерина в крови.

Выводы:

  • Щитовидные гормоны стимулируют бета-оксидацию, аутофагию (в том числе липофагию и митофагию), синтез холестерина в печени, утилизацию периферийного холестерина, увеличивают количество пероксисом, активируют CPT1;
  • В периоды высоко-углеводной диеты тиреоидные гормоны способствуют запасанию жира, а на высоко жировой диете способствуют липолизу;
  • Современные аналоги/миметики гормонов щитовидной железы я намеренно не рассматривал, чтобы не провоцировать спорные эксперименты;
  • Нормальная функция щитовидной железы, как видим, очень важна для кето-диеты.

P.S. Следующая тема: фотомодуляция функции щитовидной железы (на работах ученых из Гарварда, чтобы сложнее было считать это баснями) – и, если достану достаточно информации, то как это сделать в домашних условиях.

Поделиться:

Глюкоза и мозг: нюансы метаболизма

Глюкоза – основный источник энергии для мозга, как гласит текущий консенсус. 120 грамм глюкозы в день нам необходимы для поддержания оптимальной функции мозга [1]. Альтернативная концепция состоит в том, что лактат и кетоны – предпочтительное питание для столь важного нашего органа. У обеих точек зрения есть весомые аргументы и исследования, говорящие об их правоте.

Хочется порассуждать на тему глюкозы и взвесить обе концепции.
В процессе предлагаю пройтись по:

  • Метаболизму глюкозы;
  • Метаболизму лактата и в меньшей степени кетонов;
  • Функции транспортных белков, импортирующих глюкозу (GLUT);
  • Происходящему в дыхательной цепи митохондрий;
  • Попытаюсь сделать промежуточные выводы для себя.

Будет много базовых биохимических аспектов, выводы будут традиционно в конце.

Глюкоза. Метаболизм и проблема NAD+

Гликолиз в чистом виде (опуская все 10 шагов) выглядит так:

Glucose + 2NAD+ + 2ADP + 2Pi > 2Pyruvare + 2NADH + 2ATP

При попадании в клетку глюкоза довольно быстро фосфорилируется до глюкозы-6-фостафа. В очень редких случаях в клетках есть избыток нефосфорилированной глюкозы.

Далее у Глюкозы-6-фосфата есть 3 принципиальных пути (обозначу конечные продукты):

  • Пируват;
  • Гликоген;
  • Пентозофосфатный путь, он же PPP (NADPH, пуриновый метаболизм итд)

К гликогену и PPP применительно к мозгу я вернусь позже. Поговорим о пирувате.

Пируват мы можем использовать для синтеза аминокислот, промежуточных субстратов цикла Кребса, при необходимости для восстановления глюкозы итд – полноценный строительно-углеродный блок. Давайте вспомним окисление до ацетил-КоА, который является очень важным внутриклеточным энергетическим посредником:

Pyruvate + NAD+ + CoA-SH (кофермент А) + H+ > Acetyl-CoA + NADH + CO2

Трёхуглеродный пируват окисляется до двухуглеродного ацетил-КоА.

Судьба Ацетил-КоА куда менее разнообразна: молекула может поучаствовать в синтезе жиров/кетонов, а может отправиться в цикл Кребса (лимонной кислоты). Классическая картинка цикла Кребса ниже:

Acteyl-CoA + 3NAD+ + FAD+ + GDP + Pi + 3H2O > 2 CO2 + 3NADH + FADH2 + 3H+ + GTP + CoA

Ацетил-КоА в результате «прокрутки» цикла Кребса превращается в 2 молекулы углекислого газа, в процессе выделяя энергетическую валюту в виде GTP и доноры электронов х3 NADH и 1 FADH2.

В итоге из 1 молекулы глюкозы мы получаем 10 NADH и 2 FADH2. Молекул, которые являются донорами электронов в дыхательной цепи митохондрий.

Одновременно с этим вы можете вспомнить, что для гликолиза нужен NAD+.

Если у нас много NADH, и мы по каким-то причинам не успеваем его использовать для восстановления комплекса 1 (запуская окислительного фосфорилирования) или других реакций, то сталкиваемся с дефицитом NAD+.

Дефицит NAD+ — это псевдогипоксия, если коротко. Вспоминая заметку про роль NAD+ в голодании и кето, Глюкоза восстанавливает 111 молекул NAD+ на 1000 созданных АТФ, кетоны восстанавливают лишь 41 NAD+ на 1000 созданных АТФ.

Количество глюкозы больше возможности ее «сжечь» = получаем псевдогипоксию. Кислород не может терминально «принять» электрон, потому что еще до запуска окислительного фосфорилирования (OxPhos), этот электрон надо «посадить» на NAD+ и уже полученный NADH передать в OxPhos.

Чтобы не было путаницы. Гипоксия – увеличенное соотношение NADH/NAD+ и остановка оксилительного фосфорилирования в виду отсутствия кислорода (остановки комплекса IV). Псевдогипоксия – нарушение аэробного метаболизма из-за того, что метаболизм глюкозы создает NADH и потребляет NAD+. В одном случае повышенное соотношение NADH/NAD+ следствие в другом – причина. Итог один – нарушение окислительного фосфорилирования и синтеза АТФ.

NAD+ — «тонкое» место всего метаболизма через глюкозу.

Лактат и восстановление NAD+

Для восстановления NAD+, столь необходимого метаболизму глюкозы, организм обратимо восстанавливает пируват до лактата.

В процессе образования лактата NADH окисляется до NAD+.

Из-за необходимости в NAD+ метаболизм глюкозы невозможен без восстановления пирувата до лактата c параллельным окислением NADH до NAD+. Наш организм прекрасен и старается оптимизировать процессы. В качестве примера приведу цикл Кори:

Мышцы во время интенсивных нагрузок сталкиваются с описанной выше проблемой восстановления NAD+, и усиленно восстанавливают NAD+ с помощью лактата.

И есть печень. Основной источник энергии которой – α-кето-кислоты. Также реакцию фосфорилирования глюкозы (первый этап гликолиза) в печени катализирует глюкокиназа, менее аффинитивный глюкозе изомер гексокиназы. Забегая вперед отмечу, что мембранный пассивный транспорт глюкозы (GLUT2) гепатоцитов забирает глюкозу только при большой ее концентрации и помощи инсулина.

Лактат из сердечно-сосудистой системы утилизирует печень, при помощи глюконеогенеза восстанавливая ее до глюкозы и возвращая глюкозу в кровь. Эта утилизация лактата и называется циклом Кори.

Проблема лактата в концентрации водорода. Концентрация водорода, как помните, определяет pH. Чем больше водорода – тем ниже и кислотнее pH, чем меньше водорода – тем выше и щелочней pH. В принципе кислотность – это способность быть донором/акцептором водорода, то есть кислотой/основанием.

Проблема в свою очередь pH – это влияние на конформацию и функцию белков.

«Неубранный» клеточный мисфолдинг – это большая проблема в большинстве нейрологических и метаболических заболеваний.

Цикл Кори снижает проблем лактата и лактоацидоза, но не полностью.

Гликизирование белков

Опять немного забегая вперед, мембранный транспорт глюкозы во всех клетках пассивный. Это значит, что глюкоза может попадать в клетки только когда концентрация глюкозы снаружи больше, чем внутри.

Гликизирование – это ковалентное соединение молекул сахаров с белками и жирами. Важным является то, что это соединение не катализируют ферменты. Присоединение сахаров к белкам зависит от концентрации сахаров и белка. Некоторые белки могут оптимально функционировать только после гликизирования в аппарате Гольджи клеток.

Но в тоже время «свободное» гликизирование (не в аппарате Гольджи, где это строго контролируется и проводится в четкой последовательности) ряда белков приведет к нарушению их функции.

Не зря гликизированный гемоглобин HbA1c один из установившихся признаков диабета, показывающий количество гемоглобина, прореагировавшего с глюкозой за последние примерно 4 месяца (срок жизни эритроцитов).

Вывод можно сделать простой: избыток глюкозы приводит к нарушению функции белков за счет повышенного гликизирования оных.

Глюкоза, NADH и дыхательная цепь переноса электронов

Как помните, цепочка окислительно-восстановительных реакций в дыхательной цепи может начаться в комплексе I (NADH) или в комплексе II (FADH2). Тему я ранее освещал в серию из 3 постов: 1, 2, 3.

NADH. Примерно 2,5 АТФ; Комплекс I (выкачка протонов). Суперкомплексы из I-III-IV.

FADH2. Примерно 1,5 АТФ; Комплекс II (нет выкачки протонов). Комплекс II не образует суперкомплексов.

  • Глюкоза: NADH/FADH2 – 5:1
  • Жирные кислоты: NADH/FADH2 – 2:1 (на примере пальмитата);
  • Β-гидроксибутират (BOHB): 8:3 (2,66 : 1)
  • Ацетоацетат: 7:3 (2:33 : 1)

В соотношениях NADH/FADH2 для кетонов и жиров есть пара «если» в цикле Кребса, но в целом картина ясна.

С жирами/кетонами есть 2 противоречащих тенденции:

  • Они содержат больше свободной энергии (G), чем углеводы;
  • Они расходуются более «медленно» при помощи менее энергоёмкого переносчика электрона и через комплекс, который не выкачивает протоны (меньше вклад в создание АТФ).

Хотя не такое оно и противоречивое. Жиры – топливо, которое мы запасаем в «сытое» время, чтобы в «голодное» могли им пользоваться. Поэтому логично, что жиры содержат больше свободной энергии (G) и при этом «сгорают» в дыхательной цепи с меньшим «сиянием».

Для переноса электронов с I и II комплекса нужен CoQ (коэнзим Q) в окисленной форме. Его нужно восстановить и отправить с электроном на комплекс III.

Чтобы не углубляться в дебри, которые мы разбирали в трех статьях:

  • Стимуляция in vitro комплекса I создает Х количество реактивных видов кислорода;
  • Стимуляция in vitro комплекса II создает 6Х реактивных видов кислорода;
    1. CoQ находится в восстановленном состоянии;
    2. Что создает обратный поток электронов (Reverse Electron transport) и поток супероксидов в комплекс I;
    3. С последующей обратимой деградацией цистеиновых белков комплекса I;
    4. То есть жиры не только горят «менее ярко» и «дольше», но и не подавляют метаболизм через более быстрый и энергоёмкий комплекс I / NADH;
  • Стимуляция in vitro комплексов I и II создаёт 20Х реактивных видов кислорода.

Я не хочу очень много останавливаться на реактивных видах кислорода (ROS), но с ними по доброй традиции разницу яда и лекарства определяет доза, примеры:

  • Кето после гипергликемии снизит количество ROS;
  • Повышение ROS на кето сигнализирует POMC нейронам гипоталамуса о чувстве сытости;
  • Небольшое повышение ROS на кето после умеренной углеводной диеты имеет горметический эффект и запускает ряд восстановительных адаптаций в организме
  • Многое другое.

Вывод: гипергликемия опасна огромным количество реактивных видов кислорода и вредом митохондриям.

Коротко и простыми словами: обжорство без меры вредно и может поуничтожать вам митохондрии; сладким проще этого добиться, чем жирным, сладким+жирным еще проще (особенно хорошо для этих целей сладкое дополняют ненасыщенные жиры).

Мембранный транспорт глюкозы

Глюкоза в клетки попадает в основном пассивно через специальные транспортеры (GLUT). Пассивный транспорт означает, что глюкоза может попадать из большей концентрации в меньшую.

Разновидность GLUT определяется как правило функцией клетки. Давайте вспомните хотя бы несколько разновидностей GLUT (ниже картина сознательно неполная для нагладяности).

Свойство GLUT1 GLUT2 GLUT3 GLUT4
Орган Эритроциты Печень Нейроны Миоциты, адипоциты
Потребность в глюкозе Постоянная, низкая Вариабельная, низкая Постоянная,
высокая?
Вариабельная,
высокая
Аффинитивность глюкозе Средняя Низкая Высокая Зависит от инсулина
Дополнительные комментарии У эритроцитов нет митохондрий. Они полагаются только на гликолиз для синтеза АТФ Печень потребляет в основном α-кето-кислоты.

Глюкоза туда попадает лишь при высокой концентрации и не без помощи инсулина.

Для попадания в нейроны глюкоза проходит через GLUT1 в ГЭБ и GLUT3 в самих нейронах. GLUT4 “утоплены” в клетке. В присутствии инсулина GLUT4 сдвигаются вверх мембаны и начинают «пропускать» глюкозу в клетки.

 

В итоге мы получаем, что нейроны обладают транспорными белками глюкозы, очень к ней чувствительными.

Эритроциты живут примерно 120 дней, для попадания в миоциты и адипоциты глюкозе нужен инсулин, в печень глюкоза попадает только при высокой концентрации (и у печени есть еще ряд особенностей метаболизма глюкозы (вроде глюкокиназы вместо гексокиназы). У нейронов подобно защиты от глюкозы нет.

Только из анализа GLUT можно сделать два вывода:

  • Что глюкоза для мозга очень важна, поэтому мозг так «чуток» к ней;
  • Что нейроны крайне подвержены вреду гипергликемии, хотя должны жить вечно.

Для подкрепления 2-го тезиса напомню, что гексокиназа очень быстро фосфорилирует глюкозу при попадании последней клетку. Поэтому как правило снаружи глюкозы всегда больше, чем внутри клетки, что необходимо для пассивного транспорта глюкозы в цитозоль.

GLUT1 в гемато-энцефалическом барьере могут пропускать 100 грамм глюкозы в минуту. GLUT3 в нейронах более аффинитивны глюкозе, и их транспортная «вместимость» еще больше.

Неоспоримая важность глюкозы для мозга приводит нас к следующей подтеме.

Нейроны и глюкоза

Нейроны должны «жить» вечно и исправно передавать электрические сигналы. Нейрогенез на месте «погибшего» нейрона не заменяет «старичка» и его участие в гомологических связях. Смерть нейронов – плохо.

Теперь возьмём предыдущие доводы о вреде гипергликемии (лактоацидоз, псевдогипоксия, вредный избыток ROS) + помножим это на высокоаффинитивный глюкозе GLUT3 и отсутствие значимой фильтации количества поступающей глюкозы на уровне ГЭБ и элементов гликолиза, то возникает вопрос: как нейроны могут защититься от потенциально смертельной гипергликемии?

Ответ: никак.

И есть еще одна особенность нейронов, продиктованная их функцией: они не запасают гликоген. Отчасти это свойство постоянно «работающих» клеток. Допустим, запас гликогена постоянно сокращающихся кардиомиоцитов значительно ниже других миоцитов. И постоянно работающее сердце 80% энергетических потребностей закрывает бета-оксидацией жиров. Другая функциональная особенность – постоянная потребность в энергии и строительных белках. Активность мышц вариабельна, поэтому они запасают гликоген на случай повышения активности.

Давайте вспомним на что может быть расходована глюкоза и переложим это на нейроны:

  • гликоген (нейроны не запасают);
  • пируват (цикл Кребса, синтез углеродных «строительных блоков);
  • пентозо-фостафный путь (синтез нуклеиновых кислот и восстановителя NADPH);

В данном случае мы знаем, что у нейронов подавлена фосфоглюкокиназа, один из ферментов, необходимых для гликолиза [1]. Этот фермент катализирует необратимую (с гидролизом АТФ) реакцию фосфорилирования фруктозы-6-фосфата до фруктозы-1,6-бифосфата. Образование фруктозы-1,6-бифосфата – это committed step на метаболической развилке между пируватом и пентозо-фосфатным путём.

Получаем, что нейроны функционально блокируют образование пирувата из глюкозы, а вместо этого пускают глюкозу через пентозо-фосфатный путь на пуриновый метаболизм и нахождение в восстановленном состоянии.

Это логично сочетается с функцией «вечной» жизни: нуклеиновые кислоты для ремонта и поддержки ДНК и синтеза белков; NADPH, чтобы находится в более восстановленном энергетическом состоянии.

Однако возникает вопрос: Откуда энергия, если глюкоза уходит в основном не на энергию, а на PPP?

Может сложиться верное впечатление, что с «сахарным» вопросом нейронам не справиться без посторонней помощи. И она имеется. У нейронов есть «клетки-няньки» астроциты, которые вполне возобновимы и могут хранить незначительные запасы гликогена.

Лактатный шатл астроцитов и глюкоза

Глюкоза

Лактатный шаттл астроцитов – гипотеза, медленно набирающая обороты в научном мире. Суть ее состоит в том, что глюкоза перерабатывается в астоцитах до лактата, астроциты впоследствии в формате cell-to-cell передают лактат нейронам. Это не отменяет того факта, что нейроны могут сами использовать глюкозу. Лактат, напомню, это восстановленный пируват. Он окисляется до пирувата с образованием NADH.

Возвращаясь к транспортным мембранным белкам заметим, что у астроцитов доминирует GLUT1, менее аффинитивный глюкозе, чем GLUT3. В целом это так. Однако, например, омега-3 ненасыщенные жиры усиливают экспрессию GLUT1 белков (потребление глюкозы астроцитами в данном случае).

Еще один «удар» по GLUT3 наносит глутамат. Нейротрансмиттер, связанный с процессами возбуждения нервной системы. Возбуждение – повышение активности – повышенная энергопотребность. Но глутамат-опосредованное возбуждение снижает аффинитивность глюкозе GLUT3 (нейроны) и повышает аффинитивность глюкозе GLUT1 (астроциты).

Вот некоторые доводы в пользу лактатной гипотезы:

  • Гипотеза позволяет решить текущие противоречия в метаболизме глюкозы нейронами (откуда энергия, если глюкоза на нуклеиновые кислоты и восстановленное состояние);
  • In vivo уже сумели продемонстрировать cell-to-cell лактатный шатл;
  • Изомер лактат дегидогеназы (LDH-5), который способствует восстановлению пирувата до лактата доминирует в астроцитах, а в нейронах доминирует изомер фермента (LDH-1), который связан в большей степени с утилизацией лактата;
  • В плане транспорта лактата у астроцитов активны клеточные белки MCT1/MCT4, с низкой аффинитивностью лактату, но которые могут его транспортировать наружу; у нейронов более выражен изомер MCT2, более аффинитивный лактату и связанный забором его в клетку;
  • Противоположные данные (что у астроцитов более аффинитивные лактату клеточные белки) были In vitro и в нефизиологических условиях (температура 20 и 25 градусов), что все вместе могло изменить форму и функцию белков.
  • Гипотеза выдерживает особенности работы GLUT1 и GLUT3 в виду внешних факторов и специфики связки астроциты/нейроны

Выводы:

  • Глюкоза потребляет глюкозу в основном для синтеза нуклеиновых кислоты и нахождения в восстановленном состоянии;
  • Гипотеза лактатного шатла астроцитов логично дополняет наши проблемы в понимании метаболизма глюкозы нейронами

Остающийся вопрос: как это всё противостоит гипергликемии?

Ответ прежний: никак; лактатный шатл лишь позволяет объяснить некоторые противоречия в метаболизме глюкозы.

Глюкоза же после анализа ее метаболизма нейронами приобретает еще большее значение. От нее зависит структурная целостность ДНК нейронов. И в меньшей степени энергопотребление.

По всем анализируемым выше признакам мозг адаптировался чувствовать минимальные значения глюкозы, а организм научился ее синтезировать в ходе глюконеогенеза.

Глюкоза vs Жир

Пора сравнить жиры (кетоны) и глюкозу как источник энергии для мозга. Гемато-энцефалический барьер не пропускает длинноцепочные жировые кислоты, поэтому организм использует кетоны, которые он синтезирует из ацетил-коА при недостатке глюкозы и избытке ацетил-коА. Чего мы добиваемся голоданием или кето-диетой.

Переменная Глюкоза Жир/кетоны
Реактивные виды кислорода Мало при умеренном потреблении;

Много (потенциальный вред митохондриям) при гипергликемии

Умеренно (вызывает адаптационные изменения)
Способность быстро генерировать АТФ Да,
NADH-ориентированный метаболизм через 1й комплекс (2,5 АТФ, выкачка протонов);Пиковая возможность генерировать энергию упираться в доступность NAD+. И скорость получения последнего при помощи восстановления пирувата до лактата.
Нет,

Есть предел «пиковой бета-оксидации»

Сбалансированный метаболизм NADH/FADH2 1:2, 1:3 (FADH2 дает 1,5 АТФ и не выкачивает протоны)

Транспорт в клетки Пассивные мембранные транспортеры (GLUT) со специфичной тканям чувствительностью глюкозе;

Ряд GLUT-комплексов требуют присутствия инсулина (например, GLUT4 в мышцах и адипоцитах)

VLDL;

Кетоны для мозга (VLDL не может пересекать ГЭБ)

Способы утилизации Пируват (белки, цикл Кребса итд);

Гликоген;

Пентозо-фосфатный путь (пуриновый метаболизм, NADPH итд)

Ацетил Ко-А (только на энергию в цикле Кребса)

Синтез жиров и гормонов

Последствия переедания Лактоацидоз;

Псевдогипоксия;

Гликизирование белков

Кетоны большом количестве также снижают pH крови (как при диабетическом кетоацидозе), но даже при продолжительном голодании таких показаний сложно добиться.

 

Вывод до банальности очевиден, глюкоза – более универсальная молекула. Это и топливо, и строительные блоки для белков и нуклеиновых кислот. Кетоны/жиры – резервное топливо для периода голодания (что мы и имитируем кето).

Выводы о глюкозе

  • У глюкозы есть 3 принципиальных пути утилизации:
    • Гликоген (для мозга неактуально);
    • Пируват (цикл Кребс, строительный блок для белков, жиров);
    • Пентозо-фостатный путь (синтез нуклеиновых кислот, нахождение в восстановленном состоянии)
  • Глюкоза дает больше АТФ в секунду времени, но переедание глюкозой связано с как минимум тремя потенциально опасными моментами:
    • Лактоацидозом (вследствии необходимости восстанавливать NAD+ при помощи лактата);
    • Гликизированием (и нарушением функции белков);
    • Патологическим количеством ROS при объедании;
  • Нейроны адаптировались чувствовать малые количества глюкозы и с гипергликемией им самим не справиться;
  • Нейроны не синтезируют гликоген и у них отчасти подавлен синтез пирувата, он используют глюкозу в основном для поддержания целостности ДНК и нахождения в восстановленном состоянии (PPP);
  • Лактатный шатл астроцитов снабжает нейроны лактатом (легко окисляемым до пирувата с выделением NADH); лактатный шатл не защищает нейроны от гипергликемии;
  • Жиры – более энергоёмкая форма топлива, но из Ацетил-коА невозможно получить строительные блоки для синтеза белков. В жирах больше потенциальной и получаемой энергии, но в минуту времени жиры могут сгенерировать меньше энергии, чем глюкоза.
  • От гипергликемии нас может защитить только нас же мозг, у которого для этого есть всё необходимое.

Источники:

  1. Brain glucose transporters
  2. Sugar for the brain: the role of glucose in physiological and pathological brain function
  3. Pyruvate oxidation
  4. Cell Respiration Part 2: Aerobic Respiration (Transition Reaction & Kreb’s Citric Acid Cycle)
  5. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder
  6. Brain lactate metabolism: the discoveries and the controversies
  7. Is L-lactate a novel signaling molecule in the brain?
  8. Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy
  9. Glucose transporters in the 21st Century
  10. Glucose transporters: physiological and pathological roles
  11. Glucose transporters: structure, function and consequences of deficiency
  12. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy
  13. Brain glucose transporters
  14. Cell–cell and intracellular lactate shuttles
  15. Lactate shuttle – between but not within cells?
  16. The in vivo neuron-to-astrocyte lactate shuttle in human brain
Поделиться:

Обходные реакции и долголетие

Обходные реакции (bypass reactions) – это способ «создать» необходимую молекулу, которая «исчезает» в ходе необратимой реакции.

Самый очевидный пример bypass реакций – это глюконеогенез. Организм может создать глюкозу из аминокислот и триглицеридов, если в ней есть необходимость. Хочется рассмотреть побочную сторону подобных обходных реакций.

Для начала вспомним, что все реакции в теории обратимые. На практике же ряд реакций в организме необратимые. Обратная реакция будет термодинамически невыгодна, нет фермента, катализирующего обратную реакцию итд. Но есть обходные реакции. Это и рассмотрим.

Oxidation of Pyruvate and the Citric Acid Cycle

обратимые реакции

Известная метаболическая реакция. Катализация синтеза ацетил-коА. Ацетил-коА – важная для метаболизма энергическая молекула. Она запускает цикл Кребса. Это универсальный внутриклеточный энергетический посредник между субстратами (белки/жиры/углеводы) и энергией в химической форме (АТФ, ГТФ, NADH, FADH2). Как только нутриент был окислен до ацетил-кофермента А – назад пути нет. Углеродные основы этой молекулы могут быть использованы для получения энергии (цикл Кребса) или для запасания энергии (синтеза жиров). Но ни белки, ни углеводы уже не могут быть синтезированы из Ацетил-коА.

Пируват – конечный продукт гликолиза. Одно из звеньев глюконеогенеза. Источник энергии путем ферментации (до лактата). Источник углеродных основ для синтеза аминокислот. Пируват неплохо бы уметь восстанавливать. Но окисление пирувата до ацетил-коА – необратимая реакция.

Обратимые реакции позволяют восстанавливать нужные строительные блоки

Пример. Обратите внимания на АТФ/ГТФ.

H+ + PEP + ADP >> Pyruvate + ATP; + 1 АТФ

А теперь мы хотим восстановить PEP из пирувата. Для этого есть обходные реакции из 2 штук

  1. Pyruvate + HCO3 + ATP >> Oxaloacetate + ADP + Pi; — 1 АТФ
  2. Oxaloacetate + GTP >> PEP + GDP + CO2 + Pi; — 1 ГТФ

Чистая реакция двух последних:

Pyruvate + ATP + GTP >> PEP + ADP + GDP + Pi (- 1 АТФ; -1 ГТФ)

И сравним еще раз с изначальной:

H+ + PEP + ADP >> Pyruvate + ATP; (+ 1 АТФ).

Для восстановления PEP мы потратили больше энергии, чем извлекли из молекулы изначально.

Тоже самое с глюконеогенезом. На синтез глюкозы мы тратим больше энергии, чем извлекаем из нее. Это энергонеэффективный процесс, который использует организм, когда ему необходим тот или иной отсутствующий «строительно-углеродный блок».

Если при этом у нас не будет энергии, то все строительные блоки будут уходить на Ацетил-КоА, из которого аминокислот и глюкозы нам уже не синтезировать.

Это перекликается с теорией триажа Брюса Эймса. При неадекватном потреблении нутриентов вы лишаете организм строительных блоков. И при их общем недостатке организм будет синтезировать только жизненно важные.

Вывод:

какую диету вы бы не выбрали – следите за адекватным количеством нутриентов, витаминов и минералов в этой диете;
не надо надеяться на «внутренние ресурсы» своего организма; при недостатке нутриентов организм будет закрывать первоочередные потребности, не делая вас здоровее в долгосрочной перспективе.

P.S. Может ли быть так, что сильное падение глюкозы (3-3,5) на кето – следствие неоптимальной функции митохондрий (окислительного фосфорилирования). Глюконеогенез – АТФ-зависимый процесс. Он заметно подавляется при недостаточной дыхательной функции митохондрий.

Поделиться:

Динитрофенол – взрывоопасное похудание

Динитрофенол (DNP, 2,4-динитрофенол) – относительно непопулярное средство для похудания. И довольно опасное. Хочется сказать о нём то, что не сказал в прошлый раз.

DNP, немного истории

Динитрофенол очень близкий родственник тринитротолуола (тролила) и тринитрофенола. Как вы понимаете, DNP также является взрывчаткой. Соединения нитрогруппы и углеводородных связей обладают большой потенциальной энергией. При этом энергия активация, необходимая для протекая этой термодинамически выгодной (с выделением энергии) реакции, незначительна – достаточно потрясти. У DNP на 1 нитрогруппу меньше, поэтому молекула чуть менее взрывоопасна, чем TNT и TNP, хотя транспортировать ее лучше влажной.

У DNP есть и был ряд коммерческих применений, но влияние на людей было протестировано во время Великой (Первой мировой) войны французской армией, которая активно использовала динитрофенол в своей амуниции.

Динитрофенол

Динитрофенол – желтая пыль, при контакте с молекулой рабочие на заводах начинали терять вес, постоянно чувствовали усталость, боль и животе, слабость, затруднение дыхания. Самое примечательное – у них поднималась температура на фоне потери веса. Иногда после смерти у них была температура тела 42-43 градуса. Желтая жидкость выделалась с потом на лице и ладонях. Вскрытие не показывало явных  нарушений работы органов.

С 1933 по 1938 год динитрофенол использовался в США как средство для похудания. Итог – ряд смертей от теплового шока и один из самых громких случаев отзыва лекарств с рынка.

Дининитрофенол, механизм действия

Для начала я хочу вам напомнить основы выработки энергии (в данном случае АТФ) в дыхательной цепи митохондрий.

Молекулы с высокой энергией NADH и FADH2 начинают своей путь в дыхательной цепи, запуская цепочку окислительно-восстановительных реакций (передача электрона). NADH восстанавливает комплекс I, превращаясь в NAD+. Комплекс I восстанавливает коэнзим Q. Коэнзим Q восстанавливает комплекс 3, затем тоже самое происходит с цитохромом С и комплексом IV. В конце наш электрон ждёт кислород как терминальный акцептор электрона — образуется вода и путешествие электрона по дыхательной цепи на этом заканчивается.

Все реакции в цепи не только окислительно-восстановительные, но и экзергонические. Выляющаяся энергия расходуется (самое важное) на выкачку протонов (H+) в межмембранное пространство и в меньше степени на теплопотери в процессе реакций. H+ градиент формируется в межмембранном пространстве. В матриксе (напомню) концентрация H+ значительно ниже. Разница градиентов H+ впоследствии вращает АТФ-синтазу (иногда обозначают комплекс V), в результате образуется АТФ.

Без электрохимического градиента у нас нет АТФ. Нет АТФ – нет поддержания гомеостаза живого организма.

Диниторфенол обладает примечательными свойствами:

  1. DNP может быть как акцептором так и донором H+;
  2. DNP может свободно пересекать внутреннюю мембрану митохондрий.

Итог довольно трагичный. Протоны из межмембранного пространства переносятся в матрикс. Разницы градиентов в матриксе и снаружи матрикса больше нет – АТФ-синтаза не вращается – нет синтеза АТФ.

При разобщении H+ градиента организм начинает активнейшим образом его восстанавливать за счёт сжигания топлива (в первую очередь жиров) в дыхательной цепи. Также имеющиеся молекулы АТФ могут быть использованы для помощи в этом процессе (хотя это уже другая история).

При подобной активации дыхательной цепи организм резко сжигает запасы топлива и при этом увеличиваются теплопотери – это секрет как действия DNP, так и нашего термогенеза, не связанного с мышечной дрожью.

Динитрофенол будет рассеивать образующийся заново H+ градиент и мешать синтезу АТФ.

Культуристам неплохо бы помнить, что для поддержания работоспособности их крупных мышц как раз нужен АТФ.

Либо митохондрии хоть как-то смогут поддержать функцию синтеза АТФ на период выведения DNP, либо DNP убьёт нас быстрее за счет истощения организма и теплового шока.

При этом неплохо принять во внимание:

  • Чем выше температура окружающей среды, тем проще DNP нас убить;
  • Период выведения в литературе различается: от нескольких часов до нескольких дней;
  • Смертельная доза индивидуальна, зависит от ваших митохондриальных возможностей и ряда других параметров.

К сожалению, это лучшее из картинок, что удалось найти.

Динитрофенол, термогенин, метиленовый синий

DNP не одинок среди «митохондриальных» ядов и неядовитых разобщителей протонового градиента.

Термогенин. Он же разобщающий белок 1 (UCP1). То, что помогает нам согреваться на холоде. Нюанс его работы в том, что он выражен преимущественно в жировой ткани (особенно в бурой). И активируется при воздействии стресса холода. Это наша внутренняя молекула, которая действует в основном локально (в жире), может регулироваться организмом и наше телом может к ее активации (холоду) морфологически адаптировать клетку (бурение жира: больше митохондрий в клетке, больше жировых капель в клетке – и многое другое, бонусы закаливания мы не раз обсуждали). Но это же

Цианид. Блокирует комплекс IV (самый критичный в выкачке протонов), связываясь с рецепторами кислорода. Комплексы дыхательной цепи «встают», так как цепочка окислительно-восстановительных реакций нет может протекать, нет синтеза АТФ. В целом для токсичных веществ и ядов митохондрии – одна из возможных целей.

Метиленовый синий. Донор/акцептор электрона, может их переносить с 1 на 4 комплекс. Но при этом не пересекает мембрану. Если мы переносим электрон с 1 сразу на 4 комплекс, то тоже теряем в выкачке протонов, но это может быть в какой-то степени полезно пациентам, которым это может помочь хоть как-то наладить окислительное фосфорилирование.

Выводы:

  • DNP – взрывчатка;
  • Динитрофенол убивает за счет рассеивания H+ градиента и последующей остановки выработки АТФ;
  • Сжигание жира и рост скорости метаболизма – это отчаянная попытка организма восстановить H+ градиент;
  • Период выведение и смертельная доза индивидуальны и с довольно большой вариабельностью;
  • При этом, все всякого сомнения, DNP эффективно усиливает метаболизм и способствует жиросжиганию.

Источники:

  1. 2,4-Dinitrophenol (DNP): A Weight Loss Agent with Significant Acute Toxicity and Risk of Death
  2. Dinitrophénol: Hasta la Vista… I’ll be Back !
  3. Transport systems in the inner mitochondrial membrane
  4. THE USE OF 2:4-DINITROPHENOL AS A METABOLIC STIMULANT
Поделиться:

Растения C3/C4 и уровень дейтерия

Растения научились фиксировать энергию фотонов в химических соединениях, которые им более удобно использовать в ходе жизнедеятельности. В литературе речь обычно идет о фиксации углерода, но чуть на более глубоком уровне это химическая фиксация энергии фотонов. Углеводы из растений – основа метаболизма всего животного Мира.

Примечательно, что растения научились по-разному «приручать» энергию солнечного света.

Растения

Растения в основной своей массе относят к С3 типу.

Углерод фиксируется ферментом РуБисКо, что инициирует цикл Кальвина приводит к образованию 3-углеродных 3-фосфоглицератов. Отсюда и название группы. К С3 типу относится большинство растений на Земле (85-95%).

Основная проблема этих растений – фотодыхание, когда растения вместо углекислого газа начинают использовать кислород, что сопряжено с потерями энергии и субстрата. Тепло усиливает эти термодинамические потери. Эти потери не мешали развиваться растениям в климатах с достаточной влажностью и избытком СО2 в воздухе.

C4 – альтернативный и более поздний способ фиксации углерода и энергии. Он требует меньше углекислого газа (источника углерода) и водорода, но требует большего количества солнечной энергии.

С4 растения в мезофилле проводят первичную фиксацию СО2 в виде отрицательно заряженного гидрокарбоната НС3О, что почти исключает побочную реакцию с кислородом. Заметно снижая потери от фотодыхания. «На выходе» из мезофилл мы получаем оксалоацетат и фиксацию углерода в 4-углеродных молекулах вроде малата. И уже 4-углеродные молекулы попадают в обкладку пучка, где попадают в цикл Кальвина.

С4 растения потребляют меньше углекислого газа, защищены от побочных реакций с кислородом благодаря «двухкамерной» системе. При этом подобный метаболизм, естественно, более затратен по энергии (нужно больше АТФ) и требует большего количества солнечного света и тепла. Поэтому С4 растения процветают в жарких и сухих климатах.

В итоге С4 более эффективно осуществляют фотосинтез и менее чувствительные к источнику углерода (углекислому газу), «отфильтровывают» побочные реакции с кислородом, но более чувствительны к количество солнечного света.

Растения и дейтерий

Как я уже писал ранее, в том числе дейтерий как изотоп водорода влияет на наш метаболизм. Большая масса в 2 раза очень много значит для молекулярных реакций, вращения АТФ-синтазы и квантовых процессов вроде туннелинга.

ВАЖНО! Ранее я ошибался, говоря, что в С4 растениях дейтерия меньше. Ровно наоборот, они хуже очищаются от дейтерия [1].

Изначально я планировал финализировать заметку тем, какие растения лучше употреблять: C3, C4 или CAM. И почему-то я был убежден, что в С4 дейтерия меньше. Но при проверке это оказалось моей ошибкой.

Поэтому получается отсылка к прошлой заметке. Лето и солнце – ускоренный синтез, зима – замедление метаболизма. А С4 (кукуруза, просо, сорго) еще хуже в плане концентрации дейтерия пшеница, риса и других С3 растений.

Источники:

  1. Hydrogen-isotope composition of leaf water in C3 and C 4 plants: its relationship to the hydrogen-isotope composition of dry matter;
  2. Systematic Comparison of C3 and C4 Plants Based on Metabolic Network Analysis
  3. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation
  4. C3, C4, and CAM plants
  5. Difference between C3 and C4 cycle (C3 vs C4 cycle)
  6. Stable Isotope Ratios as Biomarkers of Diet for Health Research
  7. A global database of C4 photosynthesis in grasses
  8. http://www.cignaturehealth.com/wp-content/uploads/2017/02/Report_000x_YYYY_MMDD_Samples_Row01_Row04_NameMF.pdf
Поделиться:

мтДНК, эволюция и сезонные циклы

мтДНК – это ДНК митохондрий, которое у нас есть в дополнении к нашей основной ДНК клетки. Наследование мтДНК от матери открыл Даг Уоллес (Doug Wallace). Исследователь, обязательный к чтению для всех, интересующихся митохондиями и метаболическими процессами в целом.

Написанное ниже – осмысление и упрощение его статьи Why Do We Still Have a Maternally Inherited Mitochondrial DNA? Insights from Evolutionary Medicine. Я позволю себе сделать акценты на том, что интересует лично меня.

Темы для обсуждения в рамках заметки:

  • Почему у митохондрий существует отдельное ДНК?
  • Почему мтДНК наследуется по материнской линии?
  • Что на примере могут означать различие гаплогрупп мтДНК?
  • Традиционная кето-рубрика, может ли это что-то значить для кето?

мтДНК, причины существования

Митохондрии в наших клетках – это продукт симбиоза паразитической α-протоцианобактерии и клетки. Получившийся симбиоз стал основой для всей многоклеточной жизни. И из этого единичного симбиоза возникла вся существующая многоклеточная жизнь. Вероятно, это было так хорошо и так успешно, что не оставило конкурентам и шанса.

Появление хлоропласт – такой же процесс, но произошедший примерно на 50 млн раньше, чем у наших предков. Растения упомянул не случайно. Как видно по рисунку из статьи Уоллеса, весь метаболизм живых организмов построен вокруг конвертации солнечной энергии в удобный для нас эквивалент. И изучение фотосинтеза может быть серьезным фундаментом для метаболических исследований человека.

Большую часть своей ДНК новообразованная митохондрия передала в ядро. Но 37 генов остались в мтДНК. Почему? Логично предположить, что этого не случилось бы без веской причины.

мтДНК

Гены мтДНК кодируют белки дыхательной цепи переноса электронов и ряд ферментов матрикса митохондрий. Белок для этого синтеза импортируется из цитозоли.

Белки дыхательной цепи выполняют важную функцию – они синтезируют АТФ. Комплексы I, III, IV, выкачивают протоны в межмембранное пространство, создавая тем самым Н+ градиент. И уже созданный градиент обеспечивает вращение V-димеров АТФ-синтазы как финальный этап синтеза АТФ.

При наличии некоей константы оптимальных вариаций белков для синтеза АТФ, организм бы перенес функцию мтДНК в ядерную ДНК. Очевидно, что была огромная эволюционная необходимость, чтобы этого (за исключением ДНК-кодирования комплекса V у пары видов) не случалось.

Из этого мы получаем вывод: мтДНК существует для того, чтобы процессы внутри матрикса митохондрий (а это не только синтез АТФ) оперативно адаптировались к изменениям внешней среды. Менее защищенная, более подверженная воздействию из вне и как следствие более изменчивая мтДНК. Митохондрии – сенсор внешней среды, которые регулирует наши энергетические процессы в соответствии с воздействием окружающего мира.

Наследование мтДНК по материнской линии

Даг Уоллес открыл со своей командой интересный факт – ДНК митохондрий, вне редчайший патологических случаев, наследуется строго по материнской линии.

У сперматозоидов мтДНК в 200 раз меньше, чем у ооцитов (яйцеклеток). Белки дыхательной цепи сперматозоидов отличаются от аналогичных белков ооцитов. Поэтому иммунная система яйцеклетки уничтожает мужскую мтДНК в течение 24 часов после оплодотворения.

Это обратная сторона изменчивости мтДНК, которая мутирует в 20 раз быстрее ДНК в ядре клетки. Чрезмерный мутагенез может неожиданной мутацией поставить крест на всей популяции. Чтобы уменьшить подобную вероятность необходимо мтДНК немного ограничить в скорости мутаций. Природа организовала это блестящего – наследование от 1 родителя. Я на всякий случай напомню, что преимущество двуполой системы перед однополой как раз в повышенной изменчивости (читайте адаптации к среде) первого варианта.

С медицинской точки зрения имеет смысл исследовать (и исследуются) патологичные мутации митохондриальной ДНК.

Практический пример роли изменчивости мтДНК на гаплогруппах

Речь идет, конечно же, о гаплогруппах мтДНК, а не Y хромосомы. Гаплогруппы – определенные последовательности белков митохондриальной ДНК. Они распространены географически, что еще раз подтверждает выводы из сути наличия мтДНК.

Интересно, что генетическое разнообразие людей в Африке выше, чем во всем остальном мире. Вся не-Африка произошла от африканской гаплогруппы L3.

Давайте для конкретного примера вернемся к сперматозоидам. Подвижность их жгутиков обеспечивается в основном АТФ. И эффективность синтеза АТФ будет для фертильности критичной в данном случае. У экваториальных негров подвижность спермы выше, чем у северян.

Огромное значение для синтеза АТФ играет расстояние между белковыми комплексами. Ник Лэйн в одной из своих книг демонстрировал, что разница 1 Ангстрем может снизить эффективность передачи электронов в 10 раз!

Ближе (в теплых климатах) белки дыхательной цепи – лучше синтез АТФ, выше фертильность. В этом помогает и вода, которая при нагревании сжимается, а при охлаждении расширяется. Именно это объясняет курортные беременности. На летнем солнце улучается синтез АТФ и как следствие подвижность сперматозоидов.

Чем дальше белки дыхательной цепи, тем проще разобщать окислительное фосфорилирование. В таком случае потенциал Н+ градиента расходуется не на синтез АТФ, а на генерацию тепла в рамках термогенеза. Напомню, что во время моржевания мы активируем цепочку: стресс холода – бета-адренорецепторы – жировая капля митохондрий – термогенин – разобщение OxPHOS – сжигаение жира для генерации тепла.

В данном случае наши митохондрии реагируют на количество солнца/климат и либо усиливается фертильность, либо человек лучше адаптируется к выживанию к холоду. Это лишь единичный пример функции мтДНК на практическом примере.

мтДНК, растения и сезонные циклы

Вот мы и добрались до кето. Я не зря последовательно упоминал солнце. Напомню, что глюкоза – продукт химической фиксации растениями солнечной энергии. И когда вокруг нас летом много солнца – вокруг нас много глюкозы. А зимой глюкозы нет, нутриентов вокруг меньше, для организма логичнее сжигание жиров/кетонов и для согрева, и в рамках кетоза.

Главный смысл личной моей кето-диеты – имитация сезонных циклов избытка/недостатка глюкозы в окружающей среде. В современном мире недостатка глюкозы нет. Мы заставляем наши митохондрии противоречить тем сигналам, которые они получали бы из окружающей среды.

Сезонность моей кето-диеты – ночь длиннее дня – кето, день длиннее ночи – обычное питание. Серая зона межсезонья остается на мой выбор. Пока это октябрь-март кетогенной диеты. Я всего лишь стараюсь не мешать тем механизмам сезонной адаптации, которые уже заложены в мои митохондриальные гены.

Выводы:

  • мтДНК и митохондрии в целом обеспечивает метаболическую адаптацию к изменениям во внешней среде и являются сенсором, который реагирует метаболической адаптацией на изменения во внешней среде;
  • мтДНК передается по материнской линии, чтобы снизить вероятность патологических мутаций у этой изменчивой структуры;
  • Пример региональной адаптации – расстояние между белками ЭТЦ, у южан упор на фертильность, у северян – на термогенез и выживание на холоде;
  • Кето-диета используется мной для имитации естественных циклов избытка глюкозы и недостатка глюкозы. Все это очень логично завязывается на продолжительность дня.
Поделиться:

Дейтерий, вода и кето-диета

Дейтерий – стабильный изотоп водорода. Водород состоит из 1 протона и 1 электрона, дейтерий же состоит из 1 протона, 1 нейтрона и 1 электрона. Он иногда образуется при взаимодействии двух атомов водорода.

Физические свойства дейтерия и воды с содержанием дейтерия (HDO, D2O) будут несколько отличаться.

Дейтерий обладает большей массой и иным спином, чем традиционный водород, поэтому вода, где вместо водорода у нас дейтерий связан с кислородом, будет отличаться по своим физических характеристикам.

За счёт иных физических параметров дейтерий будет воздействовать на метаболизм всего организма. Обычно это объясняется такими феноменами как кинетический изотопный эффект и химический изотопный эффект.

В частности, дейтерий образовывает более сильные гидрофобные связи, чем водород. Что прекрасно известно в фармацевтической промышленности, где дейтерий используют, например, для увеличения продолжительности действия лекарства (пример – мнн deutetrabenazine).

Дейтерий и продолжительность жизни

На скриншоте наш экс-соотечественник Роман Зубарев на примере кишечной палочки демонстрирует как дейтерий влияет на скорость роста организма.

Концентрация дейтерия в клеточной воде примерно 155 частиц на миллион (ppm) [частиц водорода].

Из его выступления можем сделать вывод, что у живой клетки есть некое оптимальное окно концентрации дейтерия. И при повышении концентрации дейтерия происходит скачек роста. Применительно к нам это означает более быструю смерть (хотя бы только за счет того, что теломеры могут делиться лишь конечное число раз, то есть наша ДНК не может реплицироваться вечно) и метаболические проблемы (вплоть до рака).

Основа всей выработки энергии: вращение АТФ-синтазы за счет H+ градиента. Более тяжелый D+ будет замедлять вращение АТФ-синтазы, соответственно снижая выработку АТФ. Снижение дыхательной функции митохондрий (то есть снижение выработки АТФ в процессе окислительного фосфорилирования) приводит нас прямиком к теме рака как метаболической болезни.

Дейтерий и метаболизм

Чтобы не растекаться мыслью по древу:

  • Дейтерий за счет иных физических свойств оказывает иной физический и химический эффект в том числе на ДНК и NADPH (мощный клеточный восстановитель, redox);
  • Соотношение D/H влияет химический связи и такие эффекты как протонный туннелинг, что в итоге имеет ряд последствий, начиная с немного отличных свойств D2O воды, заканчивая воздействием на структуру и функции сигнальных белков, отвечающих за рост;
  • Снижение концентрации дейтерия – замедление роста, повышение – ускорения роста;

Дейтерий, цикл Кребса, пентозо-фостатный пусть и кето-диета

дейтерий

Примечательно, что жировые кислоты содержат меньшее количество дейтерия [8, ссылки 42-44 в 2].

Цифра – цифра на картинке в красном блоке

  1. Очищение от дейтерия происходит за счет оксидации жировых кислот [с пониженным содержанием дейтерия]. Этот же эффект достигается при активации комплекса 2 митохондрий (голодание, кето).
  2. Повторное использование «легкой воды» происходит в цикле Кребса во время формирования цитрата, изоцитрата, малата;
  3. За счет изменения гидрофобных/гидрофильных взаимодействий дейтерий влияет на стабильность ДНК;
  4. Глюконеогенез также приводит к образованию углеродных соединений с пониженной концентрацией дейтерия;
  5. Когда клетка демонстрирует эффект Варбурга ([пре]раковая клетка, подавленное дыхание, которое компенсируется ферментацией), она теряет возможность самостоятельно «очищать» свою воду от дейтерия. Последствием может быть урон ДНК, например. Стратегий снижения концентрации дейтерия становится при подавленной бета-оксидации питье воды с низким содержанием дейтерия (в исследованиях 40-60 ppm).

Выводы:

  • Дейтерий, тяжелая вода и их влияние на метаболизм – интереснейшая и глубокая тема, которую я лишь немного поскреб; тема на стыке физики, химии и биологии, что усложняет ее понимание и потенциальную «популярность» в современной крайне специализированной науке;
  • Дейтерий в повышенной концентрации означает для нас более быстрое старение;
  • Жиры – источник пищи с пониженной концентрацией дейтерия;
  • Организм «очищает» воду матрикса митохондрий во время бета-оксидации, некоторых шагов цикла Кребса и глюконеогенеза.
  • В раковой клетке подобное очищение подавлено, а повышенная концентраций дейтерия будет способствовать росту злокачественной опухоли. Пить воду с низкой концентраций дейтерия (40-60 ppm) – альтернативная и дополнительная метаболическая терапия.

Источники:

  1. Impact of kinetic isotope effects in isotopic studies of metabolic systems
  2. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle
  3. Dipole moment of water from Stark measurements of H2O, HDO, and D2O
  4. Cancer, Ketogenic Diet, Deuterium Depletion & Metabolic Tracing – Dr. Laszlo G. Boros (видео)
  5. Deuterium Depletion Conference 2015. presentations (видео)
  6. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements
  7. H/D isotope effects in hydrogen bonded systems
  8. Natural deuterium distribution in fatty acids isolated from peanut seed oil: a site-specific study by quantitative 2H NMR spectroscopy
Поделиться:

NAD+ как основной клеточной механизм кето-диеты

NAD+ — это окисленная форма Никотин-амидаденин-динуклеотида (NAD), чья восстановленная версия обозначается как NADH, окисленная как NAD+. Сегодня обсудим:

  • Роль Сиртуина 1 (SIRT1), как мощнейшего регулятора метаболизма (в том числе и бета-оксидации);
  • NАD+ как способ активации SIRT1;
  • Роль кетогенной диеты в активации оси NAD+ > Sirt1 > метаболические изменения;

Сиртуин 1 – мощнейший регулятор клеточного метаболизма

Тему я аккуратно начал в заметке по миметики физической нагрузки. Разберу подробней SIRT1.

Рисунок выше, Сиртуин 1 состоит из 747 аминокислот. NLS – ядерная локализация, NES – ядерные эскпортационные сигналы, P – места фосфорилирования, S – место посттрансляционной модификации SUMO-белками.

Резюмирую выводы о структуре:

  • Белок SIRT1 может проявлять себя как в ядре, так и в цитоплазме клетки;
  • Каталитическая основа величиной в 240 аминокислот с N- и C-терминалами по всей поверхности говорят об значительном потенциале воздействия белка; Остальное разберем по ходу заметки.

SIRT1 – это NАD+ активируемая деацитилаза, действующая в ответ на сигнал недостатка нутриентов. SIRT1 запускает адаптации организма к голоду. Недостаток нутриентов – это несбалансированное соотношение АМФ/АТФ, что априори будет транслироваться повышенным соотношением NАD+/NADH.

Ядерные эффекты SIRT1 (деацетилирование целевых генов приводит к изменению их выраженности):

p53 – антиопухолевый ген, который снижает смертность от рака;

PGC-1α – который запускает процессы митохондриального биогенеза, переключения с углеводов на бета-оксидацию жиров, контролирует анаболизм жира, модулирует роль инсулина и многое другое – наш кето-проводник в контексте заметки; если которого, то стимуляция кислородного дыхания (окислительного фосфорилирования).

Ключевой механизм запуска бета-оксидации и сопутствующих адаптаций к голоду является ось: повышенное соотношение NАD+/NADH > SIRT1 > PGC-1α.

FOXO гены связаны с продолжительностью жизни, их деацетилирование увеличивает продолжительность жизни за счет адаптации к недостатку нутриентов;

CRT2С2 запускает процесс глюконеогенеза; при этом важно помнить, что глюконеогенез потребляет АТФ, что не самая лучшая долгосрочная стратегия, поэтому это саморегулирующийся процесс; Известные многим адептам кето PEPCK и G6P-гены, контролирующие глюконеогенез, активируются (и саморегулируются) осью NАD+ > SIRT1 > CRTCs

Liver C Receptor (LXR) и FOXO блокируют анаболизм жира; С анаболизма на катаболизм жира нас переключает сигнал NAD+ > SIRT1 > PGC1-α > LXP > SREBP-1

Цитозольный цели SIRT1:

AceCS-1 стимулирует расщепление ацетата до ацетил Кофермента А (субстрат для цикла Кребса);

eNOS – расширения кровеносных сосудов для улучшенной доставки нутриентов; То есть дефицит нутриент способствует доставки источников энергии в ткани;

Atgs белки – участвуют в процессе аутофагии.

Пара вещей, чтобы не растягивать заметку:

  • SIRT1 KO-мыши умирали после рождения;
  • У людей с ожирением концентрация SIRT1 снижена;
  • Посттрансляционная модификация (СУМО-илирование) SIRT1 происходит при УФ радиации или повышенной концентрации H2O2 (пероксид водорода, реактивный вид кислорода);

Промежуточный вывод: SIRT1 – ключевой [известный нам] регулятор клеточного метаболизма в ответ на недостаток нутриентов. Изменения белков митохондрий или внешнее воздействие активируют и деактивируют SIRT1, что значимо влияет на адаптацию организму к метаболическому стрессу.

Общие лейтмотивы: окисление жиров, биогенез митохондрий, долголетие, сниженная смертность от метаболических болезней.

NAD+ и кето-диета

SIRT1 активирует повышенное соотношение NAD+/NADH.

Хочу напомнить вам белковые структуры дыхательной цепи переноса электронов и путь жиров и углеводов в дыхательной цепи. В результате полной прокрутки цикла Кребса мы получаем 3 NADH, 1 FADH2. NADH начинают свой путь в Комплексе 1, FADH2 в комплексе II.

Соотношение создаваемых NADH/FADH2 у молекулы глюкозы 5:1, у жиров (в зависимости от длины) примерно 2:1. Повышенное образование NADH при метаболизме глюкозы требует восстановление NAD+. Глюкоза потребляет большее NAD+, мешая тем самым активации SIRT1 и других NAD+ зависимых белков. Глюкоза восстанавливает 111 молекул NAD+ на 1000 созданных АТФ, кетоны восстанавливают лишь 41 NAD+ на 1000 созданных АТФ.

В догонку к этому кето-диета со временем подавляет комплекс I, что как минимум не будет вредить аккумуляции NAD+.

NAD+ > SIRT1 метаболическая ось является основным механизмом действия кето-диеты.

Очевидный вывод: чтобы получить максимум «бонусов» кето-диеты надо недоедать, а совсем не нужно обжираться.

Периодическое голодание, ограничение питания по времени, некоторые фармацевтические препараты делают тоже самое – увеличивают соотношение NAD+/NADH, активируя SIRT1 и запуская каскад адаптаций, положительно сказывающихся на нашем здоровье.

NAD+: синтез, способы повышения, эффекты на здоровье

Ситуация фармакологической имитации голода звучит еще смешнее, чем имитация солнечного света, но с практической точки зрения исследователям надо как-то воздействовать на NAD+, чтобы от теории дойти до действенных рекомендаций.  Поэтому стоит рассмотреть синтез NAD+, на что мы можем влиять, и к чему это воздействие может привести.

Прекурсоры NAD+:

  • Никотинамид (NAM);
  • Никотиновая кислота (NA);
  • Триптофан (Trp);
  • Никотинамид рибосид (NR);
  • Никотинамид мононуклеотид (NMN);

NAM и NAM вместе это ниацин, витамин B3: Яйца, рыба, мясо, молочка, некоторые овощи и зерновые. Молоко источник NR. NMN есть в различной пище, в том числе брокколи, авокадо, говядина.

В еде самой по себе может быть NAD+, который расщепится до прекурсоров, которые будут затем положительно влиять на синтез NАD+. Микробиота в очередной раз говорит нам привет, потому что от нее во многом зависит усвоение NR и NMN.

С прекурсорами много вопросов. В разных тканях одни выражены сильнее других. Например, NA более стабильный прекурсор для почек, NAM для печени. И так как это активное поле исследований без четкого понимания дозировок/эффектов, но я позволю себе не говорить на тему усиления NAD+ > SIRT1 оси за счет добавок.

NAD+

Рисунок выше. Пути биосинтеза NАD+. Первый. De novo (с нуля) из триптофана. Второй Preiss-Handler pathway, также de novo. Из никотиновой кислоты. И третий. Разложение и повторное использование. Отсылаю всех к источнику [4] за большими подробностями.

Важно понимать, что NАD+ активирует не только Сиртуины. Но еще и:

  • ADP-ribosyltransferases, including poly(ADP-ribose) polymerases (PARPs);
  • cyclic ADP-ribose synthases (cADPRSs)

Одна из гипотетический стратегий поднятия NАD+ — уменьшение потребление NAD+ другими ферментами. Также можно блокировать комплекс I (метформин и другие бигуаниды) и, судя по всему, ресвератрол тоже мешает работе белковых комплексов митохондрий [5].

Но я не сторонник снижения эффективности дыхательной цепи переноса электронов, так как это может негативно сказаться, например, на мышечной массе. Потеря которой является одним из основных признаков старения.

Во время старения концентрация NАD+ снижается: за счет повышенного «спроса» организма на NАD+ и/или за счет ухудшенного синтеза. На текущий момент есть 2 признака здорового долголетия: низкое количество воспалительных процессов и недобор калорий. Ось NАD+ > SIRT1 вполне объясняет второй вариант.

В конце я хочу привести скрины исследования [4].

Известные положительные эффекты и механизмы действия NAD+ прекурсоров

NAD+ и отличительные признаки старения

Выводы

  • Ключевой клеточный механизм кето-диеты – ось NАD+ > SIRT1;
  • SIRT1 регулирует как выраженность тех или иных генов, так и процессы в цитозоле клетки: бета-оксидация жиров, анаболизм жира, глюконеогенез, биогенез митохондрий и многое-многое другое;
  • Чтобы получить все эти бонусы во время кето-диеты – надо недоедать;
  • Вне кето-диеты стратегия недоедания, периодического голодания и ограничения питания по времени дает схожий эффект;
  • Синтез NАD+ можно попытаться усилить прекурсорами, но пока это во многом terra incognita без четкого понимания принимаемого и эффектов.

Источники:

  1. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism?
  2. Targeting SIRT1 to improve metabolism: all you need is NAD+?
  3. NAD+ in aging, metabolism, and neurodegeneration
  4. NAD+ in Aging: Molecular Mechanisms and Translational Implications
  5. Effects of resveratrol on the rat brain respiratory chain
Поделиться:

Миметики физической нагрузки

Миметики физической нагрузки – это различные молекулы, чьи применение отчасти имитирует эффект физических упражнений.

Exercise Mimetics: Impact on Health and Performance

Вводная часть немного пересекается с заметкой про рак как метаболическую болезнь.

Физические упражнения известные своей способностью предотвращать и смягчать метаболические проблемы: диабет 2 типа, сердечно-сосудистые заболевания. Иногда нагрузка дает результат, превышающий по эффективности лекарства.

Механизм действия в данном случае – гормезис. Незначительный вред, который вызывает адаптацию организма к нагрузкам, что положительно сказывается на метаболической функции организма в целом.

Самый примечательный эффект физкультуры – биогенез митохондрий в мышцах (чтобы обеспечить их возросшую энергетическую потребность) и для аэробных нагрузок – это сдвиг метаболизма в сторону окисления жиров. Это перекликается с подходом Силуянова (и далеко не только его): гликолитическими и окислительными волокнами, где в последних значительно больше митохондрий.

Миметики физической нагрузки – это молекулы, принятие которых позволяет отчасти сымитировать подобные процессы мышечной адаптации.

Миметики могут быть полезны: людям с ограниченной подвижностью и [потенциально] для соревнующихся спортсменов.

Миметики физической нагрузки и сигналы клеточной адаптации к нагрузкам

миметики физической нагрузки

Во время упражнений мы расходуем АТФ. При переносе электрона с комплекса 1 NADH конвертируется в NAD+, что само по себе способствует насыщению клетки кислородом, а заодно и активирует метаболические стресс-сигналы. Допустим, АМФ-активируемую протеинкиназа (AMPK) и Сиртуин 1 (SIRT1), которые фосфорилируют и деацетилируют целевые белки, способствующие окислительной «трансформации» мышц. Не менее важный эффект имеют в этом процессе реактивные виды кислорода.

PCG1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) – регулятор биогенеза митохондрий и окислительного метаболизма, наиболее выражен в тканях с повышенной потребностью в энергии (мышцы (в том числе сердце), бурый жир). Физические нагрузки активируют этот белок.

Другие ко-факторы – транскрипторные подавляющие регуляторы RIP140 (receptor-interacting protein 140) и NCOR1 (nuclear receptor co-repressor 1). Во время физической нагрузки RIP140 перемещается из ядра в цитоплазму, тем самым снижая подавление транскрипции целевых генов этим белком. NCOR1 одинаково выражен как в окислительных, так и в гликолитических волокнах. Физическая нагрузка вызывает удаление NCOR1 из мышц, что способствует их «преображению». PCG1α и RIP140/ NCOR1 синергичны в своем воздействии на мышцы.

Мы получаем схему: стресс физической нагрузки – изменения ключевых белков – выраженность генов, способствующих окислительному ремоделингу мышц.

Транскрипторные факторы, влияющие на изменения мышц, PPARδ (peroxisome proliferator-activated receptor δ) и ERRα/γ ((estrogen-related receptor α/γ). PPARδ влияет на метаболизм жирных кислот. Чрезмерная выраженность этого фактора приводит к окислению жиров и митохондриальному биогенезу. Действие эстрогено-подобных рецепторов альфа и гамма подобно PPARδ.

Миметики упражнений воздействуют на те или иные белки. С картинкой и теорией закончили.

Миметики физической нагрузки. Примеры

Активаторы AMPK. Например, AICAR. AMPK – стресс-сигнал для клетки, означающий «голод». Способствует забору глюкозы клетками и запуску бета-оксидации.

Проблем с AICAR я вижу две. Очевидная – это допинг-список WADA. Второе – сигнал клеточного «голода», который противоречит анаболическим процессам (синтеза белка). В теории AICAR может мешать росту мышечной массы. Подтверждение нашлось. Activation of AMP-Activated Protein Kinase by AICAR Prevents Leucine Stimulated Protein Synthesis in Rat Skeletal Muscle. AICAR мешает лейцину стимулировать mTOR (рост мышц), и мешал росту мышц, где нагрузка имитировалась электростимуляцией.

PPARδ лиганды. Самый известный и скандальный — GW501516, на котором WADA ловила нашу Олимпийскую сборную по легкой атлетике (спортивной ходьбе). Эта молекула, действительно, заметно способствует окислению жирных кислот. Однако у этой молекулы проблемы с клиренсом (выведением) из мышц и печени, она слишком сильнодействующая, имеет свойство системно аккумулироваться – получаем действенный, но опасный препарат. PPARδ лиганды – действенный способ активировать окислительный ремоделинг мышц, но пока у нас нет безопасной молекулы, позволяющей это сделать.

SIRT1 активаторы. Ресвератрол. Замечательная молекула, бонусы для здоровья которой освещены в научной литературе. Как пример Resveratrol and exercise. Проблема, которую я вижу, это эффективная дозировка и последующая «цена курса». Эффективная дозировка у животных начиналась с 10 мг на 1 кг веса, а иногда доходила до 100 мг на 1 кг веса. Возьмем, допустим, 20 мг на 1 кг веса. Получим 1,6 грамма ресвератрола в день для мужчины 80 кг. В районе 3,5 тысяч рублей за 1 месяц употребления ресвератрола.

SIRT1 также активирует FOXO-гены, способствующие долголетию. Другие эффекты SIRT1: расширение сосудов для доставки нутриентов, генерация ацетил ко-А из ацетата (стимуляция цикла Кребса), стимуляция аутофагии, усиливает клеточной дыхание, способствует глюконеогенезу, адаптации к недостаточности нутриентов и так далее. Подробнее можно прочитать в статье Targeting SIRT1 to improve metabolism: all you need is NAD+?.

Как вы уже поняли, NAD+ (продукт переноса электронов с комплекса 1 на комплекс 3) – также способ активировать SIRT1. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Снижение концентрации NAD+ — маркер гипоксии и клеточного «старения». Молекула в том числе способствует митофагии (аутофагии поврежденных митохондрий).

К NAD+ я вернусь к отдельной заметке. Применительно к этой заметке, это безопасные миметики физической нагрузки, чьи положительные эффекты выходят за пределы модуляции упражнений.

REV-ERBα лиганды. Выражены в окислительных волокнах, упражнения усиливаю их выраженность, что делает подобный класс молекул перспективными и интересными. Два самых известных вещества SR9009 и SR9011. Данные по ним положительные и интересные, но эффект и безопасность должны быть тщательно освещены, чтобы можно было рекомендовать эти молекулы.

ERRγ лиганды. Молекула GSK4716 заметно апрегулировала биогенез митохондрий, цикл Кребса. При полном отсутствии in vivo экспериментов и исследований говорить о потенциальных эффектах стоит крайне аккуратно.

Выводы:

  • Миметики физической нагрузки – потенциально очень полезные молекулы, которые могут в том числе сымитировать окислительный ремоделлинг мыщц; что потенциально очень важно для пациентов с ограниченной подвижностью, спортсменов и против возрастной медицины;
  • На текущий момент SIRT1 активаторы ресвератрол и NAD+ видятся мне наиболее безопасными и действенными имитаторами физических упражнений;
Поделиться: