Кислотно-щелочной баланс клетки и здоровье

Кислотно-щелочной баланс (pH) – это прекрасный маркер, через призму которого мы можем получить ряд выводов о работе клетки. Я много писал об электронах как источниках энергии, но именно протоны определяют pH, необходимый для геомеостаза клетки. Напомню, что pH сильно влияет на белковые структуры, может как нарушать некоторые связи, так и создавать их. Особо интересующимся рекомендую статью «Сенсоры и регуляторы внутриклеточного pH». Я буду брать информацию оттуда крайне выборочно.

Специализация внутри клетки приводит к тому, что у различных органелл разный pH.

Кислотно-щелочной баланс клетки

Рисунок 1. Кислотно-щелочной разных внутриклеточных компонентов. pH отдельных органелл и компонентов в прототипической клетке млекопитающего. Значения собраны из разных источников. pH митохондрии относится к матриксу.

Клетка постоянно подвергается ацидификации двумя путями:

  • Негативный электрический потенциал вокруг клетки притягивает в нее ионы и выталкивают отрицательно заряженные основания HCO3-;
  • Кислотные субстраты являются побочным продуктом различных метаболических реакций (в том числе синтеза АТФ, мышечные сокращения, активация лейкоцитов патогенами)

Авторы пишут, что энергия для «выталкивания» протонов напрямую и не напрямую дается АТФ. Сразу хочу напомнить версию Линга, к которой я вернусь уже на этой неделе. Что структура живой клетки определяется белками, ионами солей и водой. И что индукционные и электростатические свойства белков определяют во многом наши клетки. Что в полноразвернутых конформациях белков (которым способствует щелочной pH) CO и NH основы усиливают дипольный момент воды, и что протоны крупных молекул выталкиваются по термодинамическим причинам без затраты энергии. Линг очень хорошо критиковал идеи «протоновых насосов», потому что им неоткуда брать столько энергии для всех вкачиваний/выкачиваний.

Побочным продуктом синтеза АТФ является углекислый газ (CO2). Он довольно быстро реагирует с водой (не без помощи некоторых ферментов), образуя угольную кислоту (CO2 + H2O <> H2CO3 <> HCO3- + H+), понижая кислотно-щелочной баланс (делая его более кислотным). Как видите, и бикарбонаты могут спонтанно соединяться с протонами Н+ с образованием угольной кислоты. Раз ацидификация происходит во время синтеза АТФ, значит она происходит постоянно. С ацидификацией, возвращаясь к Лингу, белки могут образовывать водородные и солевые связи, что приведет к снижению поляризации окружающей воды и как следствие по термодинамическим же причинам в клетку смогут проникать ионы с более крупной молярной массой (вроде Na+).

Кислотно-щелочной баланс митохондий выше из-за выкачки протонов (особенностей их функции). pH лизосом (которые занимаются аутофагией) логично кислотный, так как это необходимо для их функции (разрушение белковых структур).

Один из способов регуляции pH – ферменты карбонат ангидразы. Если ее ингибировать фармакологически, то можно не только получить алкалоз и вывести кучу воды с Na+ (диуретический эффект).

Na+ внутрь (из-за сниженного pH), HCO3- внутрь и Cl- наружу приводит к повышению клеточного pH. Если мы возьмем идеи Линга, процесс получается почти что автоматическим.

Последнее, что хочу отметить – это ацидификация при хронических заболеваниях. О чем красноречиво говорит рисунок ниже.

Попытки повлиять диетой (деля еду на кислотную и щелочную) ущербны, ненаучны и безрезультатны. Но можно меньше причинять вреда своему организму, не создавая дополнительных проблем для его гомеостаза.

P.S. Если коротко суммировать смысл написанного, то производство АТФ приводит к снижению pH, что вынуждает организм защищаться. Посыл очень простой – жизнь вас убьет на сама по себе, не надо для этого ничего дополнительного делать.

Поделиться: