Дендритные клетки иммунной системы

Дендритные клетки – часть иммунной системы организма. Их сооткрывателем и открывателем ряда их ключевых функций был Ральф Штейнман [1,2], за что в 2011 году он получил Нобелевскую премию. По воле случая получилось так, что доктор Штейнман был единственным, кому Нобелевская премия досталась посмертно (сама по себе премия присуждается живым людям). Казус заключался в том, что смерть господина Штейнмана и объявление о присуждении ему премии произошли в один день (в пятницу), но о смерти было объявлено только в понедельник. Комитет Нобелевской премии решил, что технически на момент объявления победителя доктор Штейнман был жив, и ситуацию не стали «переигрывать».

Дендритные клетки (Dendritic cells, DCs) получили свое название за внешнюю схожесть с дендритами нейронов. Они являются частью врожденного иммунитета и играют важную роль в активации адаптивного иммунитета.

Цель заметки – раскрыть базовые принципы активации Т-клеток дендритными клетками и познакомить читателя с необходимой терминологией.

Содержание заметки:

  • Врожденная и адаптивная иммунная система;
  • Общие принципы функционирования врожденной иммунной системы;
  • Pathogen-associated molecular patterns (PAMPs) и pattern recognition receptors (PRRs);
    • Небольшой фокус на дендритных клетках и интерфероне I типа.
  • Коротко о разных видах клеток адаптивной иммунной системы;
  • Дендритные клетки и их функции:
    • Antigen presenting cells и активация Т-клеток;
    • MHC-белки и пептидные «сигнатуры» микробов;
    • Разница MHC I и MHC II;
    • Активация дендритных клеток молекулярными паттернами микробов;
    • CCR7 (рецептор хемокина 7) и миграция в дендритных клеток в лимфоузлы;
    • Циркуляция наивных Т-клеток и попадание их в лимфоузлы;
    • Презентация антигена дендритными клетками и принцип «двойного рукопожатия»;
    • Активация, экспансия и деактивация Т-клеток.

Рассказ не хочется ограничивать исключительно нюансами функций DCs. Хочется, чтобы эта информация накладывалась на какую-то базу о работе иммунной системы. При этом попытки охватить все и сразу не будет. Комплиментарная система, подробности создания и работы антигенов, активация B-клеток и многого-много другого в заметке не будет.

Врожденная иммунная система

Innate immune system (врожденный иммунитет) – мгновенно реагирует на заранее определенное и небольшое количество патогенных паттернов;

Adaptive immune system (адаптивный иммунитет) с задержкой реагирует, но на любое антитело. В последствии запоминая антитело, и в последующие разы реактивно на него реагируя.

Основной клеточный состав врожденной иммунной системы:

  • Циркулирующие в крови клетки:
    • Нейтрофилы, фагоцитируют бактерии, но быстро погибают (в течение часа), секретируют цитокины итд;
    • Моноциты, преобразовываются в макрофаги при попадании в ткани;
  • Дозорные клетки (sentinel cells):
    • Маркофаги, фагоцитоз микробов и мертвых клеток (в основном нейтрофилов), секретируют цитокины, несколько месяцев жизни итд;
    • Тучные клетки (mast cells), секретируют цитокины, гистамины итд;
    • Дендритные клетки, запускают антивирусный ответ, активируют Т клетки итд.

Дозорные клетки находятся в тканях и реагируют на микробы после пересечения последними эпителиальных барьеров кожи и кишечника.

Циркулирующие клетки иммунной системы находятся в крови. И при воспалении попадают в нужные ткани.

Примерный порядок активации врожденного иммунитета:

  • Микробы пересекают эпителиальные барьеры;
  • Рецепторы дозорных клеток опознают «непрошенных гостей»;
  • Дозорные клетки секретируют провоспалительные цитокины;
  • Цитокины связывают на рецепторах эндотелия;
  • Что активирует молекулы адгезии внутри сосудов;
  • Различные молекулы адгезии с разной аффинитивностью связываются с соответствующими лигандами на поверхности циркулирующих иммунных клеток:
    • Например, e-selectin связывается с низкой аффинитивностью с лингадом e-selectin на нейтрофилах, что затормаживает их движение;
    • I-CAM связывается с высокой аффинтивностью с LFA-1 белком иммунной клетки, что останавливает иммунную клетку;
  • После полной остановки иммунные клетки просачиваются с воспаленную ткань и начинают все доступными им способами уничтожать микробы;
  • Первыми приходят нейтрофилы, фагоцитируют бактерии и через пару часов погибают сами; За ними приходят моноциты, превращаются в макрофаги и «подъедают» остатки трупов как микробов, так и нейтрофилов.

Остается вопрос: как дозорные клетки врожденного иммунитета опознают микробы?

PAMPs (Pathogen-associated molecular patterns) – паттерны молекулярных патогенов;

PPRs (Pattern recognition receptors) – рецепторы, опознающие паттеры.PAMPs:

  • Вирусные (находятся внутри клетки):
    • ДНК;
    • Односпиральные РНК;
    • Двуспиральные РНК
  • Бактериальные (в большей степени на поверхности клетки):
    • Паттерны Грам-отрицательные паттерны:
      • Липополисахариды (LPS) клеточной стенки;
      • Флагеллины («жгутики» для перемещения);
    • Паттерны Грам-положительных бактерий:
      • Флагеллины;
      • Тейхоивые кислоты;
      • Пептидогликаны

Бактерии уничтожаются при помощи фагоцитоза и разрушения их клеточной стенки.

Цепочка будет такой: бактерия связывается с PPRs на поверхности клетки (так называемые TLRs toll like receptors) → димеризация рецепторов и запуск цепочки внутриклеточных сигналов ˧ деактивация ингибитора Nf-Kb → выраженность транскрипторного фактора Nf-Kb  → клеточные изменения, в частности секреция цитокинов TNFα и IL-1.

Плазмоцитоидные дендритные клетки и антивирусный ответ

С вирусами ситуация чуть интересней, и тут к нам возвращаются дендритные клетки.

Дендритные клетки реагируют на вирусные PAMPs секретированием интерферонов 1 типа. INF type 1 приводят клетки (например, эпителия) в противо-вирусное состояние. Которое заключается в большей подверженности апоптозу зараженными клетками, выраженности белков/ферментов, которые мешают вирусу размножаться и которые могут наносить урон ДНК/РНК вируса.

Сами клетки в противовирусном состоянии также способны секретировать INF type 1.

Дендритные клетки

Необходимые вводные закончились, пора приступить к antigen presenting cells. К антиген презентующим клеткам относятся дендритные клетки, макрофаги и B-клетки.

В дальнейшем речь будет идти о том, как DCs активируют Т-клетки адаптивной иммунной системы.

Т-клетки, MHC I и MHCII

Т клетки своими рецепторами могут воспринимать только пептиды, представленные им на MHC белках антиген презентующих клеток.

MHC II

  • Отвечает за бактерии;
  • Дендритные клетки интернализируют бактерии, уничтожают их в лизосомах, в итоге мы получаем пептидную «сигнатуру» бактерии;
  • MHC с пептидом отправляется к мембране;
  • MHC II связываются с рецепторами CD4+ клеток (T helpers, которые активируют B-клетки и клетки врожденной иммунной системы;
  • MHC II есть у антиген презентующих клеток.

MHC I

  • Отвечает за вирусы (тему опухолей пропустим);
  • Вирусный белок проходит юбиквинацию и становится доступных протеазам;
  • Протеаза «расщепляет» вирусный белок до пептидов;
  • Вирусный пептид с помощью транспортера TAP попадает в эндоплазматический ретикулум, откуда с MHC I комплексом попадает на мембрану;
  • MHC I активирует CD8+ клетки (цитотоксичные T клетки, которые уничтожают зараженные вирусы;
  • MHC I есть у большинства клеток, что объясняется особенностью вирусов.

Дендритные клетки. Активация и миграция в лимфоузлы

Для активации дендритных клеток должно произойти 2 события:

  • MHC белок с пептидом микроба на поверхности клетки (значит он был так или иначе интернализирован и расщеплен до пептидов);
  • PAMP рецепторы дендритных клеток должны быть активированными микробами;

При выполнении двух этих условий дендритные клетки выражают CD80/CD86 (подробнее чуть позже) и CCR7 (хемокин рецептор 7), выраженность которого приводит к тому, что DCs мигрируют в лимфососуды и по ним попадают во вторичные лимфо-органы. В частности, в лифмоузлы, где в межмембранном пространстве встречаются с Т-клетками.

Дендритные клетки активируют Т клетки

Т-лимфоциты путешествуют по крови по попадают с мемфоликулярное пространоство лимфоузлов при помощи кровотока и так называемых High endothelial venules (HEV).

Дело в том, что Т-клеток, аффинитивных определенному антигену, очень немного. Поэтому они путешествуют по организму, заходя ненадолго в лимфоузлы, куда активированные дендритные клетки попадают из тканей.

Для активации Т-клеток должно пройти 2 сигнала:

Сигнал 1. Антиген должен связаться с рецептором Т-клетки (нужна Т клетка с необходимой аффинитивностью рецептора;

Сигнал 2. Костимулирующие молекулы должны соединиться. Это B7-1 (CD80) и B7-2 (СD86) на стороне DCs и CD-28 на стороне Т-клеток.

Сигнал 1 без сигнала 2 приведет к апоптозу или анергии (угасание активной иммунной функции) Т-клетки.

После активация Т клетки проходят clonal expansion, активно делятся, их становятся десятки тысяч в случае с CD4+ и даже сотни тысяч в случае CD8+. Плюс Т-клетки после активации приобретают некоторые полезные фукнции.

Я опущу вопрос активации B-клеток Т-клетками, вопрос более глубокой функции T helpers и T killers. Остановлюсь только на активации Т клеток. В ткани они попадают примерно также, как циркулирующие в кроки клетки врожденной иммунной системы (см выше).

дендритные клетки

Деактивация Т-клеток

Любое воспаление (особенно цитотоксичное) чревато последствиями для организма. И этот процесс на уметь «тормозить».

В лимфоузлах это за это отвечает белок CTLA4 на Т-клетках, который связывается вместо CD28 с B7-1/B7-2. Это приводит к тому, что во время активации у нас будет только сигнал 1 и Т клетка будет неактивной.

Ткани (и опухоли) выражают PD-1 лиганд (PD-1, programmed death), который связывается с PD-1 белком Т-клеток, что приводит к их exhaustion (истощению), то есть деактивации.

Моноклональные антитела, подавляющие функции CTLA-4 и PD-1, одно из последних слов в борьбе с раковыми заболеваниями.

Выводы:

  • Дендритные клетки активируются двумя сигналами:
    • MHC белком на мембране, на котором будет пептидный антиген;
    • PAMPs микробов связывается с рецепторами DCs;
  • Активированные дендритные клетки выражают CCR7, что позволяет им мигрировать через лимфо-сосуды в лимфоузлы и «искать» в междфоликулярном пространстве нужную Т-клетку;
  • Активация Т-клеток включает в себя 2 сигнала:
    • Сигнал 1 MHC с пептидом (антигеном) связываются с нужным TCR (T cell receptor);
    • Сигнал 2, костимуляция CD86/CD80 DCs с CD28 Т-клеток;
  • При наличии только сигнала 1 Т-клетки подвергаются апоптозу или анергии;
  • После активации начинается экспансия и дифференциация Т-клеток, которая является одним из компонентов ответа иммунной системы.

Источники:

  1. The road to the discovery of dendritic cells, a tribute to Ralph Steinman;
  2. Ralph Steinman (1943–2011). Immunologist and cheerleader for dendritic-cell biology;
  3. Торможение лейкоцитов молекулами адгезии [видео];

P.S. Это было писать скучно, в виду пересказа без моего вклада, но необходимо для ряда последующих заметок.

Словарь по итогам заметки:

  • Врожденная иммунная система:
    • Дозорные клетки (тучные, макрофаги, дендритные – это только основные, есть и другие);
    • Циркулирующие клетки (моноциты, нейтрофилы);
    • Также врожденная иммунная система включает в себя барьеры (эпителий, муцин), белки и молекулы (комплименты, агглутинины);
  • Адаптивная иммунная система: B-клетки, T-помощники, цитотоксичные Т-клетки;
  • Дендритные клетки:
    • MHC I,
    • MHC II
    • CCR7
    • B7-1 (CD80)
    • B7-2 (CD86)
  • Т-клетки:
    • CD28
    • CTLA4
    • PD-1
  • Клональная селекция;
  • Клональная экспансия
  • Антиген-презентующие клетки (DCs, макрофаги, B-клетки);
  • Анергия
Поделиться:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *