Кетоз. «Итоги» полугода и тяжелый метал

Кетоз – физиологическое состояние повышенной концентрации в крови кетоновых тел и пониженного (как правило) содержания глюкозы. Достигается это состояние голоданием и кетогенной диетой (много жира, умеренно белка, мало углеводов).

В кетоз я вхожу каждый год (с 14-го) на зимний период. Для меня есть четкая связь между количеством солнца и углеводами. И когда ночь длиннее дня, я стараюсь переключаться с глюкозы на кетоз.

Полгода назад я выкладывал изначальные тесты.

Настало время подводить итоги:

Тестирование на кетоны и глюкозу

Результаты анализов «до и после»

Кетоз, концентрация кетонов и глюкозы

кетоз

Полноценный вход в кетоз (пробить 2 ммоль BOHB) заняло около недели.

Концентрация глюкозы обратно пропорциональна концентрации бета-гидроксибутирата.

Моя гипотеза о NAD+ > Sirt1 (имитации голодания как основном механизме кето-диеты) подтвердилась. Дефицит калорий всегда соответствовал 2+ ммоль бета-гидроксибутирата.

Меня интересовал в период тестирования не столько perfect score, сколько различные эксперименты с питанием. Что я заметил по крайней мере у себя:

  • К «желаемой» терапевтической концентрации BOHB (> 2 ммоль/л) приходил только с дефицитом калорий;
  • Орехи почти выбивают из кето (0,3-0,5);
  • Соленья тоже (1-2 соленых помидора);
  • Магазинная баранина и прочая мясная продукция (беру только то, где в составе только мясо) менее кетогенно для меня чем молочка: на мясе сложно было «пробить» 1,5 ммоль BOHB, на молочке легко уходил за 2. Скорее всего, это вопрос к содержимому магазинного мяса, где как бы ничего нет, кроме мяса;
  • Эксперимент с l. reuteri оказался неудачным: пробиотик снижал глюкозу на 0,8-1 ммоль/л от прогноза относительно уровня BOHB, с сопутствующими эффектами гипогликемии; полезный пробиотик, но не для меня на кето;
  • Ацетил L-карнитин никак не влиял на уровень бета-гидроксибутирата в крови: видимо в моем случае на активность фермента CPT1A L-карнитин не влиял;
  • Влияло ли закаливание на уровень кетонов – не ясно, вроде бы нет;
  • Антибиотики вполне ощутимо бьют по митохондриям (которые произошли от бактерий) и заметно «просаживают» уровень кетонов;
  • Молочка в виде сыров на кето идет у меня прекрасно, молочка в другой форме (молоко, сливки, сметана) по очевидной причине (наличие сахара) скорее негативно влияла на уровень кетонов;
  • Мой организм усиленно поддерживает уровень глюкозы – для опускания глюкозы ниже 4,5 мне надо сильно голодать;
  • Среднее значение кетонов за диету 1,4 ммоль/л, глюкозы (капилярная кровь) – 5,3 ммоль/л

Disclaimer. Ниже будет обсуждение анализов. Все единицы изменения вы найдете по ссылке на Excel-файл (выше). Для простоты изложения ниже я буду игнорировать единицы измерения.

Кетоз и диабет

Концентрация глюкозы за полгода кето снизилась с 5,0 до 4,8. Как я говорил, моему организму очень нравится поддерживать концентрацию глюкозы.

Инсулин снизился с 8,7 до 6,9. Ожидаемо.

Гликизированный гемоглобин (Hb1Ac) остался в прежнем значении: 5,0; чему я несколько удивлен (ожидал снижение), но вероятно это следствие поддержания организмом уровня глюкозы.

Индекс НОМА (норма < 3,4) снизился с 1,9 до 1,3. Что явно говорил о потенциале кетогенных диет в борьбе с сахарным диабетом 2-го типа.

Кетоз и атеросклероз

Холестерин общий (Cholesterol) поднялся с 5,19 до 5,79;

ЛПВП-холестерин (HDL) поднялся с 1,08 до 1,29;

ЛПНП-холестерин (LDL) поднялся с 3,37 до 4;

Триглицериды (Trig) поднялись с 0,74 до 0,88

На мой взгляд, липидная панель одна из самых бесполезных на кето. Возможно, при мутациях метаболизма жиров эти показатели стоит тщательно отслеживать. В моем случае нет. У очень полных людей, вероятно, LDL мог бы снизиться, как и триглицериды.

Кетоз и воспаление

C-реактивный белок снизился с 0,04 до 0,02 (норма до 0,5), лишний раз подтверждая противовоспалительные свойства кето-диеты. На фоне уже начавшихся проблем со здоровьем, но в тоже время на фоне повышения дозировки D3 с 5000 МЕ до 10000 МЕ.

Кетоз и щитовидная железа

Трийодтиронин свободный (FT3) снизился с 4,2 до 4,0;

Тироксин свободный (FT4) снизился с 15,7 до 15,5;

Тиреотропный гормон (TSH, ТТГ) снизился с 1,32 до 1,08

На фоне острого отравления веществом, токсичным для щитовидной железы. В целом еще один бесполезный для человека со здоровой щитовидной железой тест. Нет значимых изменений (а тем более ухудшений) концентрации тиреоидных гормонов.

В виду того, что гормоны щитовидной железы очень важны для бета-оксидации жиров пациентам с дисфункциями этой железы стоит тщательно взвесить потенциальные риски и бонусы кето-диеты.

В целом же еще раз убедился, что проблемы с щитовидкой из-за кето такой же миф «вреда кето» как атеросклероз.

Кетоз и концентрация половых гормонов

Лютеинизирующий гормон (LH) снизился с 3,42 до 0,8 (упал к началу референса);

Фолликулостимулирующий гормон (FSH) остался почти неизменным: 2,22 > 2,19;

Пролактин (Prolactin) опустил я сам каберголином: 151,4 > 107,8

Тестостерон (Testosterone) снизился с 17,48 до 11,08;

Эстрадиол (Estradiol) снизился со 118 до 37 (последнее ниже «референса»;

За 2 недели до теста у меня было острое отравление токсичным веществом, которое может снижать ЛГ и как следствие тесто;

Последние 3-4 месяца были в режиме «нон-стоп»: работа (иногда по 16+ часов в день) и обучение в Медицинской Школе Гарварда (где мне нужен был и успешно получен GPA 4, высший средний академический бал) – на фоне сна по 3-4 часа в день такие нагрузки вполне могли привести к результатам выше;

Даже вне эффектов кето было как минимум 2 фактора, которые могли «обрушить» мне ось Гипофиз (ЛГ) – Тестостерон – Эстрадиол. С этим я буду разбираться вместе с эндокринологом, а возможно и нейрологом. В процессе диеты снижения работоспособности и либидо не было.

Тем не менее, кетоз и половые гормоны – пища для размышления. Я предлагаю вам ознакомиться с уже ставшей классикой в узких кругах информацией на сайте Марка Сиссона: Dear Mark: Ketosis and Testosterone.

С одной стороны, повышение жира в диете приводит к повышению уровня тестостерона. С другой механизм плюсов кето – как у голодания, а голодание – падение тестостерона.

The Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Males – пожалуй, мое любимое исследование про кето и силовые тренировки. Там уровень тестостерона был значительно выше в кето-группе, чем в контрольной.

Промежуточный итог: в зависимости от контекста истории и образа жизни конкретного человека кетоз может как повышать, так и понижать тестостерон.

Мой случай, к сожалению, нерелевантен. В момент сдачи анализа я бы в острой фазе отравления, сильно устал от «ударных» месяцев работы и учебы.

Вопрос кето и половых гормонов, вероятно, стоит сделать предметом следующих экспериментов.

Кетоз и функция печени

Ряд незначимых для меня анализов пропущу.

Аланинаминотрансфераза (ALT) снизилась с 34 до 24;

Аспартатаминотрансфераза (AST) снизилась с 26 до 19;

Прямой билирубин вырос с 6,1 до 8,1;

Непрямой билирубин вырос с 14,4 до 22,9.

Повышенный билирубин у меня + небольшие отклонения в анализе крови – мой синдром Жильбера. Это палка о двух концах: с одной стороны, это традиционно считается фактором риска, отдельно ничего не значащим. С другой, за последние годы были исследования, что люди с синдромом Жильбера живут дольше и что у нас длиннее теломеры лимфоцитов (очень интересная статья в Nature).

Снижение АЛТ и АСТ говорит о снижении катаболизма гепатоцитов. Очевидно, что кетоз имеет гепатопротекторные свойства на уровне хорошего курса фосфолипидов. Еще один сильный удар под дых кето-мифам. На высоко жировой диете печени лучше, а не хуже.

Сердце, моча, кровь и кетоз

Эти анализы я заранее не сдавал. Но иногда можно посмотреть на итог, чтобы оценить риски.

ЭКГ нормальное, без отклонений. Кето по крайней мере в моем случае вряд ли связано с дополнительным риском сердечно-сосудистых заболеваний;

С кровью всё тоже нормально и неинтересно. В моче были кетоновые тела (неудивительно), и ее pH были ниже границы нормы. Тут я вижу один из малообсуждаемых рисков кето-диеты.

В заметке про баланс pH я рассказывал о том, как организм поддерживает гомеостаз pH. У углеводов есть важное преимущество – снижение кислотности за счет их метаболизма выводится легкими в виде СО2 (подробности в заметке). Кетоз – это жиры+белки, кислотность которых выводится почками, чья способность выводить протоны значительно меньше легких.

Я позволю себе напомнить вывод метаболических кислот почками:

Lactic acid = H+ + lactate-

Кетоны выводятся по такому же принципу. Анион фильтруется в клубочках нефронов.

Протон (а кислотность – это концентрация протонов) соединяется с бикарбонатом и по цепочке реакций в почках, которые и для легких и для почек описываются общей формулой ниже:

H2O + CO2 ↔ H2CO3 ↔ H+ + HCO3-

Вода + углекислый газ ↔ угольная кислота ↔ протон+ + бикарбонат-

Фильтрация метаболических кислот требует забирания бикарбоната из кровотока, затем почки через цепочку реакций отфильтруют протон с мочой, а бикарбонат реабсорбируют в кровоток.

По идее кетоз подразумевает мониторинг Anion Gap метаболического ацидоза.

Na+ + K+ — CL- — HCO3-, в норме 16-20 mEq/L, без калия 12-16

Если значение Anion Gap растет, значит бикарбонат в формуле заменяется другими анионами, и мы двигаемся в сторону метаболического ацидоза.

Проблема с этим методом в том, что в России я пока не нашел тестов на бикарбонат в крови.

Кетоз в течение полугода и выводы:

  • Для высоких уровней BOHB в моем случае крайне важен был дефицит калорий;
  • Кетоз обладает гепатопротекторными свойствами, может быть терапией при сахарном диабете 2-го типа, также стоят внимания противовоспалительные свойства кето-диеты;
  • Кетоз скорее всего не влияет на липидную панель, щитовидную панель, состояние выводящей системы здоровых людей;
  • Не лишним будет мониторинг high anion gap метаболического ацидоза, так как избыток и жиров, и белка создает дополнительную нагрузку на выводящую систему за счет фильтра почками метаболических кислот (тех же кетонов);
  • Вопрос кето-диеты и половых гормонов в рамках кето диеты остается открытым.

Личная история. Отравление литием (предположительно)

Часть про кетоз закончилась. Но мне кажется, что будет нелишним рассказать про свои последние злоключения. Тем более они стали причиной выхода из кето на 2 недели раньше запланированного срока и заметно снизили качество жизни.

2-го марта (предположительно, но очень вероятно) чем-то отравили.

Сначала была слабость и неприятные ощущения в ЖКТ;

Затем начали болеть почки (тянущая боль);

Через неделю присоединилась слабость, «мурашки» в конечностях, иногда такое состояние, что вот-вот упаду в треморе; и пару раз у меня замечали легкий тремор конечностей.

Одно время было очень тяжело концентрироваться, при просмотре текста глаза непроизвольно бегали из стороны в сторону.

И появились головные боли, которых у меня в принципе нет.

Моя логика:

Если печень ок, а клиренс в основном почечный, то речь идет о молекуле с зарядом. Незаряженная (гидрофобная) или амфифильная молекула будут вести себя по-другому.

Если речь идет об уроне периферийным нервам (димиелинация или как-то еще), то молекула, скорее всего, небольшая.

Развитие симптомов в течение недель говорит о долгом клиренсе.

Я предположил тяжелые металлы и пошел делать панель токсичных металлов.

Проблема была вот в чем (как на графике). Период полувыведения может длиться дни, а общий клиренс – недели. И сдача крови и мочи на металлы с почти трехнедельным опозданием могла бы ничего не показать.

Я лично ждал, что «виновник» в лучшем случае будет в верхней четверти значений.

Оказалось, что немного превышен литий. Когда я просмотрел домашний справочник по токсикологии, учебник по психофармакологии и интернет, то был поражен, что мои симптомы 1 в 1 попадают в симптомы острого отравления литием. Даже тремор в руках и проявления неврологических нежелательных явлений через 7-14 дней после принятия.

Проблема с этим микроэлементом в том, что химически он очень похож на электролиты. Na+, Mg+, Ca+. Значит он будет реабсорбироваться почками.

Также у меня есть примерно 2-3 месяца на избавление от симптомов (которые могут стать в случае с литием перманентными);

Мой план:

Урология. Исключить хронический урон почкам (на 95% дискомфорт ушёл); в процессе, так как все равно заставили делать разные бак-посевы секрета простаты, которые делаются неделю;

Неврология. ЭЭГ, Консультация невролога. Общий восстановительный курс капельниц. Параллельно PQQ на митохондрии, Б-комплекс в течение 2 месяцев, обнаружил заодно недостаток меди (из-за цинка на постоянке) и селена – чем разберусь. Неврологию разделил на 3 части: общеукрепляющие проливки (актовегин, церебролизин или что назначат), отдельно митохондрии, уровень энергии и снизить потенциальный мутагенез (PQQ, Д-рибоза, хлорелла), помощь в заживлении нервной системы (Thorne Basic B, ежовик, коллаген, бульоны, сыворотка, возможно что-то еще).

Эндокринология. Повторный тест гормонов. Консультация эндокринолога.

Идею плазмофареза отмел пока, так как концентрация в крови почти норма. И мое предположение о литии — это рабочая версия. В теории еще может быть много вариантов. Подниму тему с неврологом, как скажет профи, так и решу.

Поделиться:

Баланс pH, углекислый газ и диета

Баланс pH – очень важный элемент гомеостаза организма в целом.

Функцию белков (в том числе ферментов) определяет их конформация. Конформация (положение в пространстве) белка зависит не только от последовательности аминокислот в полипептидной цепи, но и от факторов среды: давление, температура, баланс pH и другое.

pH определяется по формуле –log(H+) и показывает концентрацию Н+ протонов. 7 – нейтральный pH, 0 — крайне кислотный, 14 – крайне щелочной. Кислота –донор H+, основание – акцептор Н+.

N (+) и C (-) терминалы всех белков/аминокислот обладают зарядами, R-группы зачастую тоже. Полярность аминокислоты обуславливает возможность аминокислот объединяться в полипептидную цепь.

CO(-) и NH(+) остовы (а как следствие водородные связи) определяют вторичную структуру белка (α-спирали и β-листы). Взаимодействие R-групп определяет третичную структуру белка. Везде мы видим полярные связи (притяжение + и -) как основу конформационных связей белков.

Кислотность (концентрация протонов) приводит к более закрытой или свернутой конформации. Щелочная среда способствует более развернутой конформации белков, где полипептидные остовы могут образовывать связи с полярными и несущими заряд молекулами (например, ионами).

баланс pH

Created with GIMP on a Mac

Баланс pH крови в норме – 7.36 – 7.44. Как мы уже разобрались, этот слегка щелочной pH нужен для поддержания нормальной конформации и функции белков.

Дыхание и баланс pH

Углекислый газ – конечный продукт окисления ацетил Ко-А в цикле Кребса и побочный продукт других метаболических реакций. Мы не используем CO2 как источник углерода, а банально избавляемся от избытков во время выдыхания.

Парциальное давление углекислого газа находится в значении 35-45 mmHg. В воздухе его почти нет. Поэтому нашим легким не стоит труда избавляться от CO2.

Кислотность тут вот причем, нужно хорошо запомнить формулу ниже:

H2O + CO2 H2CO3 H+ + HCO3-

Вода + углекислый газ ↔ угольная кислота ↔ протон+ + бикарбонат-

Протон – это повышение кислотности или сниженный баланс pH.

Рост парциального давления углекислого газа в крови будет означать снижение pH. Организм с этим борется выдыханием. И невозможность выведения CO2 убьет нас за считанные минуты.

Буфером кислотности в крови служат эритроциты и гемоглобин.

При повышенной концентрации углекислого газа он при помощи диффузии попадает в эритроциты. Там по формуле выше превращается в итоге в протон, который связывают белки гемоглобина, и бикарбонат, который покидает эритроцит.

Рядом с альвеолами происходит обратная реакция и углекислый газ успешно покидает легкие.

Важно! Легкие выдыхают 15 000 ммоль «кислоты» в день. Являясь, таким образом, основным инструментом, поддерживающим баланс pH в организме.

pH крови очень легко изменить за счет дыхательных техник. Например, холотропного дыхания, пранаям или метода Вима Хофа.

Подобные техники контролируемой гипервентиляции приводят к тому, что баланс pH сдвигается сильнее в щелочную сторону (до 7.75 у Хофа[2]). Белки в более развернутой конформации, им проще реагировать с ионами кальция (Ca+). Соединение свободного кальция с белками и дает нам ощущение покалывания в конечностях.

Баланс pH и почки

Вы смело можете заметить, что H+ может быть продуктом не только цикла Кребса, но и метаболизма аминокислот (амино-группа NH3), жировых кислот (тоже много водорода), и даже продуктов ферментации (лактат).

Метаболические кислоты кислоты можно разделить на 2 части, водород и анион:

Например, молочная кислота → Н+ + лактат-

Почки выводят метаболические кислоты следующим образом:

Анионы отфильтровываются в клубочках нефронов;

Водород ждёт куда более интересное приключение:

  • Водород соединяется с бикарбонатом с образованием угольной кислоты: H+ + HCO3- → H2CO3;
  • Угольная кислота катализируется до воды и CO2 + H2CO3 → H2O + CO2;
  • Углекислый газ попадает в клетки почечных канальцев;
  • Внутри происходит обратная реакция, в результате которое бикарбонат возвращается в кровь, а протон выводится с мочой.

Важно! Почки фильтруют 60-70 ммоль «кислоты» в день. Против 15 000 ммоль легких.

Легкие – история минут, почки – недель.

Функцию почек по выведение кислоты проверяют по так называемому anion gap.

Na+ + K+ — CL- — HCO3-, в норме 16-20 mEq/L, без калия 12-16.

Высокий anion gap – признак метаболического ацидоза.

И в принципе высокое количество бикарбоната (HCO3-) означает большое количество CO2 и проблемы с pH.

Баланс pH и диета

Если верить учебникам [3, например], то максимальная способность почек вывода кислоты (протонов) – 700 ммоль в день (в 10-11 раз больше нормального метаболического объема).

Для наглядности возьмём это исследование [4], где увеличение потребления белка на 48% (с 88 грамм до 128 грамм белка на 1.73 м2) привело к увеличению выведения кислоты почками на 45% (с 64 до 95 ммоль/день).

Учитывая эту простую математику, несложно подсчитать сколько нужно было бы есть белка, чтобы заставить почки выводить кислоту на полную. При линейном сохранении пропорций для достижения пикового выведения кислоты в день в 700 ммоль, необходимо употреблять более 930 грамм белка в день. В исследовании это примерно 80 кг мужского веса. Это более 11,5 грамм белка на 1 кг веса. Или 4+ кг куриных грудок в день в течение минимум 5 дней.

Вы можете пересчитать это на любой нужный вам продукт, чтобы увидеть, что диета почти неспособна повлиять на баланс pH крови. Кислотно-щелочные диеты можно забыть, как странное предположение. Экзогенные кислоты, нарушение функции почек, генетические дефекты ключевых ферментов почек – более вероятные признаки ацидоза. Никак не еда.

Выводы:

  • Баланс pH среди прочих факторов влияет на конформацию белков: щелочной – развернутая, кислотный – свернутая;
  • Основной способ борьбы со снижением pH – выдыхание углекислого газа;
  • При помощи несложных манипуляций с дыханием легко изменить баланс pH крови;
  • Почки вносят свой вклад в вывод метаболических кислот из организма;
  • Их «запас прочности» в плане выведения кислоты в 10-11 раз превышает нормальный метаболизм.
  • Диетой практически невозможно влиять на баланс pH крови;
  • Дефекты почек и экзогенные молекулы (лекарства, яды, токсины итд), с другой стороны, могут привести к high anion gap метаболическому ацидозу;
  • Здоровые почки на кето-диете лишними не будут. И прибегая к кето-диете, стоит учитывать нагрузку на почки со стороны уже принимаемых лекарств.

Источники:

  1. pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4;
  2. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans
  3. 4 Renal Regulation of Acid-Base Balance (continued)
  4. Effects of a high protein intake on renal acid excretion in bodybuilders
Поделиться:

Тиреоидные гормоны и метаболизм жиров

Тиреоидные гормоны (щитовидной железы) – известный регулятор липидного метаболизма.

Direct effects of thyroid hormones on hepatic lipid metabolism

При помощи приведенной свежей статьи в Nature хочется более подробно взглянуть на эту тему. Речь пойдет преимущественно о процессах в печени

Т3 и Т4 обладают прямыми [и непрямыми] эффектами на холестерин и синтез жировых кислот. Повышенные уровни LDL и HDL могут быть ассоциированы с гипотиреозом, а сниженные – с гипертиреозом. Высокие дозы Т3 ранее использовали для похудания, но пришлось прекратить из-за серьезных нежелательных явлений. Сейчас левотироксин иногда используется офф-лейбл для похудания.

Способы воздействия щитовидных гормонов на метаболизм жиров:

  • Транскрипторная регуляция;
  • Пост-трансляционная модификация (PTM);
  • Влияние на концентрацию метаболитов;
  • Влияние на энергетический статус в клетке

Транскрипторная регуляция (ядро) подразумевает наличие рецепторов (THR) где-то в ядре. Благо гидрофобность гормонов позволяет позволяем им проникать в ядро клетки. Гормоны щитовидной железы могут не ограничиваться «профильными» рецепторами, могут связываться и с другими рецепторами (например, с FOXO1, forkhead box protein O1), могут связываться с другими белками (в том числе ферментами), могут участвовать в сигнальных клеточных каскадах.

Рецепторы имеют две изоформы: THRα и THRβ. Обе присутствуют в большинстве тканей, но THRβ в большей степени выражен в печени, а THRα в сердце.

Тиреоидные гормоны стимулируют липолиз из запасов жира в белой жировой ткани (WAT) и пищевых источников для создания свободных жировых кислот, которые являются основным источником липидов для печени. Также щитовидные гормоны оказывают влияние на мембранные транспортные белки (FATPs, L-FABPs, CD36), через которые жировые кислоты попадают в печень. Транспортные белки вполне успешно регулируются TH-рецепторами.

Тиреоидные гормоны

De novo липогенез – это создание триглицеридов из пирувата (продукт гликолиза) при избытке глюкозы в диете. Также липогенез (но уже не de novo) может начинаться с циркулирующих и внутриклеточных жировых кислот. Тиреоидные гормоны способствуют de novo липогенезу (из глюкозы).

Противоречие «одновременной» стимуляция липогенеза и липолиза (мы знает, что одновременно организм такого не даст сделать, это «пустой» метаболический цикл) поясняется на рисунке выше. При избытке углеводов в диете (лето), как мы знаем, растет Т3, что логично связано с задачей запасания жира на период зимнего голода/спячки. Зимой же щитовидные гормоны стимулируют липолиз и кетогенез, как следствие доставку энергии до тканей/мозга в виде VLDL и кетонов.

Не смотря на стимуляцию липогенеза, во время гипертиреоза мы получаем похудание даже на высоко углеводной диете. Так как метаболический уровень превышает синтез триглицеридов.

Тиреоидные гормоны стимулируют липофагию и аутофагию в печени.

Щитовидные гормоны ап-регулируют число и активность пероксисом (органеллы, которые «откусыывают» по 2 углерода от длинноцепочных жировых кислот и «справляются» с образовывающимися в процессе реактивными видами кислорода).

Переходя к митохондриям, очевидно, что тиреоидные гормоны склоняют наши энергостанции к оксидативному метаболизму. За счет активации PGC-1α и (ненапрямую) SIRT1 мы задействуем ось PGC-α1 > NRF1 > mtTFA. Таким образом гормоны щитовидной железы активируют бета-оксидацию как на уровне ДНК, так и на уровне мтДНК.

Ограничивающий скорость бета-оксидации фермент карнитин O-палмитоилтрансфераза 1 (CPT1) (еще точнее его печеночная изоформа CPT1-Lα) стимулируется щитовидной.

Тиреоидные гормоны «объединяют» (couple) реакции липофагии с аутофагием митохондрий, поврежденных реактивными видами кислорода.

Активация бета-оксидации означает кроме всего прочего две вещи: активацию синтеза холестерина (для создания гормонов же) и активацию синтеза кетонов (как условно конечно продуктов бета-оксидации жиров).

В тоже время периферийный холестерин (LDL) конвертируется в HDL и возвращается в печень через так называемый reverse cholesterol pathway. Последим этапом «возврата» периферийного холестерина будет секреция желчи. Таким образом, тиреоидные гормоны обладают механизмом снижения холестерина в крови.

Выводы:

  • Щитовидные гормоны стимулируют бета-оксидацию, аутофагию (в том числе липофагию и митофагию), синтез холестерина в печени, утилизацию периферийного холестерина, увеличивают количество пероксисом, активируют CPT1;
  • В периоды высоко-углеводной диеты тиреоидные гормоны способствуют запасанию жира, а на высоко жировой диете способствуют липолизу;
  • Современные аналоги/миметики гормонов щитовидной железы я намеренно не рассматривал, чтобы не провоцировать спорные эксперименты;
  • Нормальная функция щитовидной железы, как видим, очень важна для кето-диеты.

P.S. Следующая тема: фотомодуляция функции щитовидной железы (на работах ученых из Гарварда, чтобы сложнее было считать это баснями) – и, если достану достаточно информации, то как это сделать в домашних условиях.

Поделиться:

Глюкоза и мозг: нюансы метаболизма

Глюкоза – основный источник энергии для мозга, как гласит текущий консенсус. 120 грамм глюкозы в день нам необходимы для поддержания оптимальной функции мозга [1]. Альтернативная концепция состоит в том, что лактат и кетоны – предпочтительное питание для столь важного нашего органа. У обеих точек зрения есть весомые аргументы и исследования, говорящие об их правоте.

Хочется порассуждать на тему глюкозы и взвесить обе концепции.
В процессе предлагаю пройтись по:

  • Метаболизму глюкозы;
  • Метаболизму лактата и в меньшей степени кетонов;
  • Функции транспортных белков, импортирующих глюкозу (GLUT);
  • Происходящему в дыхательной цепи митохондрий;
  • Попытаюсь сделать промежуточные выводы для себя.

Будет много базовых биохимических аспектов, выводы будут традиционно в конце.

Глюкоза. Метаболизм и проблема NAD+

Гликолиз в чистом виде (опуская все 10 шагов) выглядит так:

Glucose + 2NAD+ + 2ADP + 2Pi > 2Pyruvare + 2NADH + 2ATP

При попадании в клетку глюкоза довольно быстро фосфорилируется до глюкозы-6-фостафа. В очень редких случаях в клетках есть избыток нефосфорилированной глюкозы.

Далее у Глюкозы-6-фосфата есть 3 принципиальных пути (обозначу конечные продукты):

  • Пируват;
  • Гликоген;
  • Пентозофосфатный путь, он же PPP (NADPH, пуриновый метаболизм итд)

К гликогену и PPP применительно к мозгу я вернусь позже. Поговорим о пирувате.

Пируват мы можем использовать для синтеза аминокислот, промежуточных субстратов цикла Кребса, при необходимости для восстановления глюкозы итд – полноценный строительно-углеродный блок. Давайте вспомним окисление до ацетил-КоА, который является очень важным внутриклеточным энергетическим посредником:

Pyruvate + NAD+ + CoA-SH (кофермент А) + H+ > Acetyl-CoA + NADH + CO2

Трёхуглеродный пируват окисляется до двухуглеродного ацетил-КоА.

Судьба Ацетил-КоА куда менее разнообразна: молекула может поучаствовать в синтезе жиров/кетонов, а может отправиться в цикл Кребса (лимонной кислоты). Классическая картинка цикла Кребса ниже:

Acteyl-CoA + 3NAD+ + FAD+ + GDP + Pi + 3H2O > 2 CO2 + 3NADH + FADH2 + 3H+ + GTP + CoA

Ацетил-КоА в результате «прокрутки» цикла Кребса превращается в 2 молекулы углекислого газа, в процессе выделяя энергетическую валюту в виде GTP и доноры электронов х3 NADH и 1 FADH2.

В итоге из 1 молекулы глюкозы мы получаем 10 NADH и 2 FADH2. Молекул, которые являются донорами электронов в дыхательной цепи митохондрий.

Одновременно с этим вы можете вспомнить, что для гликолиза нужен NAD+.

Если у нас много NADH, и мы по каким-то причинам не успеваем его использовать для восстановления комплекса 1 (запуская окислительного фосфорилирования) или других реакций, то сталкиваемся с дефицитом NAD+.

Дефицит NAD+ — это псевдогипоксия, если коротко. Вспоминая заметку про роль NAD+ в голодании и кето, Глюкоза восстанавливает 111 молекул NAD+ на 1000 созданных АТФ, кетоны восстанавливают лишь 41 NAD+ на 1000 созданных АТФ.

Количество глюкозы больше возможности ее «сжечь» = получаем псевдогипоксию. Кислород не может терминально «принять» электрон, потому что еще до запуска окислительного фосфорилирования (OxPhos), этот электрон надо «посадить» на NAD+ и уже полученный NADH передать в OxPhos.

Чтобы не было путаницы. Гипоксия – увеличенное соотношение NADH/NAD+ и остановка оксилительного фосфорилирования в виду отсутствия кислорода (остановки комплекса IV). Псевдогипоксия – нарушение аэробного метаболизма из-за того, что метаболизм глюкозы создает NADH и потребляет NAD+. В одном случае повышенное соотношение NADH/NAD+ следствие в другом – причина. Итог один – нарушение окислительного фосфорилирования и синтеза АТФ.

NAD+ — «тонкое» место всего метаболизма через глюкозу.

Лактат и восстановление NAD+

Для восстановления NAD+, столь необходимого метаболизму глюкозы, организм обратимо восстанавливает пируват до лактата.

В процессе образования лактата NADH окисляется до NAD+.

Из-за необходимости в NAD+ метаболизм глюкозы невозможен без восстановления пирувата до лактата c параллельным окислением NADH до NAD+. Наш организм прекрасен и старается оптимизировать процессы. В качестве примера приведу цикл Кори:

Мышцы во время интенсивных нагрузок сталкиваются с описанной выше проблемой восстановления NAD+, и усиленно восстанавливают NAD+ с помощью лактата.

И есть печень. Основной источник энергии которой – α-кето-кислоты. Также реакцию фосфорилирования глюкозы (первый этап гликолиза) в печени катализирует глюкокиназа, менее аффинитивный глюкозе изомер гексокиназы. Забегая вперед отмечу, что мембранный пассивный транспорт глюкозы (GLUT2) гепатоцитов забирает глюкозу только при большой ее концентрации и помощи инсулина.

Лактат из сердечно-сосудистой системы утилизирует печень, при помощи глюконеогенеза восстанавливая ее до глюкозы и возвращая глюкозу в кровь. Эта утилизация лактата и называется циклом Кори.

Проблема лактата в концентрации водорода. Концентрация водорода, как помните, определяет pH. Чем больше водорода – тем ниже и кислотнее pH, чем меньше водорода – тем выше и щелочней pH. В принципе кислотность – это способность быть донором/акцептором водорода, то есть кислотой/основанием.

Проблема в свою очередь pH – это влияние на конформацию и функцию белков.

«Неубранный» клеточный мисфолдинг – это большая проблема в большинстве нейрологических и метаболических заболеваний.

Цикл Кори снижает проблем лактата и лактоацидоза, но не полностью.

Гликизирование белков

Опять немного забегая вперед, мембранный транспорт глюкозы во всех клетках пассивный. Это значит, что глюкоза может попадать в клетки только когда концентрация глюкозы снаружи больше, чем внутри.

Гликизирование – это ковалентное соединение молекул сахаров с белками и жирами. Важным является то, что это соединение не катализируют ферменты. Присоединение сахаров к белкам зависит от концентрации сахаров и белка. Некоторые белки могут оптимально функционировать только после гликизирования в аппарате Гольджи клеток.

Но в тоже время «свободное» гликизирование (не в аппарате Гольджи, где это строго контролируется и проводится в четкой последовательности) ряда белков приведет к нарушению их функции.

Не зря гликизированный гемоглобин HbA1c один из установившихся признаков диабета, показывающий количество гемоглобина, прореагировавшего с глюкозой за последние примерно 4 месяца (срок жизни эритроцитов).

Вывод можно сделать простой: избыток глюкозы приводит к нарушению функции белков за счет повышенного гликизирования оных.

Глюкоза, NADH и дыхательная цепь переноса электронов

Как помните, цепочка окислительно-восстановительных реакций в дыхательной цепи может начаться в комплексе I (NADH) или в комплексе II (FADH2). Тему я ранее освещал в серию из 3 постов: 1, 2, 3.

NADH. Примерно 2,5 АТФ; Комплекс I (выкачка протонов). Суперкомплексы из I-III-IV.

FADH2. Примерно 1,5 АТФ; Комплекс II (нет выкачки протонов). Комплекс II не образует суперкомплексов.

  • Глюкоза: NADH/FADH2 – 5:1
  • Жирные кислоты: NADH/FADH2 – 2:1 (на примере пальмитата);
  • Β-гидроксибутират (BOHB): 8:3 (2,66 : 1)
  • Ацетоацетат: 7:3 (2:33 : 1)

В соотношениях NADH/FADH2 для кетонов и жиров есть пара «если» в цикле Кребса, но в целом картина ясна.

С жирами/кетонами есть 2 противоречащих тенденции:

  • Они содержат больше свободной энергии (G), чем углеводы;
  • Они расходуются более «медленно» при помощи менее энергоёмкого переносчика электрона и через комплекс, который не выкачивает протоны (меньше вклад в создание АТФ).

Хотя не такое оно и противоречивое. Жиры – топливо, которое мы запасаем в «сытое» время, чтобы в «голодное» могли им пользоваться. Поэтому логично, что жиры содержат больше свободной энергии (G) и при этом «сгорают» в дыхательной цепи с меньшим «сиянием».

Для переноса электронов с I и II комплекса нужен CoQ (коэнзим Q) в окисленной форме. Его нужно восстановить и отправить с электроном на комплекс III.

Чтобы не углубляться в дебри, которые мы разбирали в трех статьях:

  • Стимуляция in vitro комплекса I создает Х количество реактивных видов кислорода;
  • Стимуляция in vitro комплекса II создает 6Х реактивных видов кислорода;
    1. CoQ находится в восстановленном состоянии;
    2. Что создает обратный поток электронов (Reverse Electron transport) и поток супероксидов в комплекс I;
    3. С последующей обратимой деградацией цистеиновых белков комплекса I;
    4. То есть жиры не только горят «менее ярко» и «дольше», но и не подавляют метаболизм через более быстрый и энергоёмкий комплекс I / NADH;
  • Стимуляция in vitro комплексов I и II создаёт 20Х реактивных видов кислорода.

Я не хочу очень много останавливаться на реактивных видах кислорода (ROS), но с ними по доброй традиции разницу яда и лекарства определяет доза, примеры:

  • Кето после гипергликемии снизит количество ROS;
  • Повышение ROS на кето сигнализирует POMC нейронам гипоталамуса о чувстве сытости;
  • Небольшое повышение ROS на кето после умеренной углеводной диеты имеет горметический эффект и запускает ряд восстановительных адаптаций в организме
  • Многое другое.

Вывод: гипергликемия опасна огромным количество реактивных видов кислорода и вредом митохондриям.

Коротко и простыми словами: обжорство без меры вредно и может поуничтожать вам митохондрии; сладким проще этого добиться, чем жирным, сладким+жирным еще проще (особенно хорошо для этих целей сладкое дополняют ненасыщенные жиры).

Мембранный транспорт глюкозы

Глюкоза в клетки попадает в основном пассивно через специальные транспортеры (GLUT). Пассивный транспорт означает, что глюкоза может попадать из большей концентрации в меньшую.

Разновидность GLUT определяется как правило функцией клетки. Давайте вспомните хотя бы несколько разновидностей GLUT (ниже картина сознательно неполная для нагладяности).

Свойство GLUT1 GLUT2 GLUT3 GLUT4
Орган Эритроциты Печень Нейроны Миоциты, адипоциты
Потребность в глюкозе Постоянная, низкая Вариабельная, низкая Постоянная,
высокая?
Вариабельная,
высокая
Аффинитивность глюкозе Средняя Низкая Высокая Зависит от инсулина
Дополнительные комментарии У эритроцитов нет митохондрий. Они полагаются только на гликолиз для синтеза АТФ Печень потребляет в основном α-кето-кислоты.

Глюкоза туда попадает лишь при высокой концентрации и не без помощи инсулина.

Для попадания в нейроны глюкоза проходит через GLUT1 в ГЭБ и GLUT3 в самих нейронах. GLUT4 “утоплены” в клетке. В присутствии инсулина GLUT4 сдвигаются вверх мембаны и начинают «пропускать» глюкозу в клетки.

 

В итоге мы получаем, что нейроны обладают транспорными белками глюкозы, очень к ней чувствительными.

Эритроциты живут примерно 120 дней, для попадания в миоциты и адипоциты глюкозе нужен инсулин, в печень глюкоза попадает только при высокой концентрации (и у печени есть еще ряд особенностей метаболизма глюкозы (вроде глюкокиназы вместо гексокиназы). У нейронов подобно защиты от глюкозы нет.

Только из анализа GLUT можно сделать два вывода:

  • Что глюкоза для мозга очень важна, поэтому мозг так «чуток» к ней;
  • Что нейроны крайне подвержены вреду гипергликемии, хотя должны жить вечно.

Для подкрепления 2-го тезиса напомню, что гексокиназа очень быстро фосфорилирует глюкозу при попадании последней клетку. Поэтому как правило снаружи глюкозы всегда больше, чем внутри клетки, что необходимо для пассивного транспорта глюкозы в цитозоль.

GLUT1 в гемато-энцефалическом барьере могут пропускать 100 грамм глюкозы в минуту. GLUT3 в нейронах более аффинитивны глюкозе, и их транспортная «вместимость» еще больше.

Неоспоримая важность глюкозы для мозга приводит нас к следующей подтеме.

Нейроны и глюкоза

Нейроны должны «жить» вечно и исправно передавать электрические сигналы. Нейрогенез на месте «погибшего» нейрона не заменяет «старичка» и его участие в гомологических связях. Смерть нейронов – плохо.

Теперь возьмём предыдущие доводы о вреде гипергликемии (лактоацидоз, псевдогипоксия, вредный избыток ROS) + помножим это на высокоаффинитивный глюкозе GLUT3 и отсутствие значимой фильтации количества поступающей глюкозы на уровне ГЭБ и элементов гликолиза, то возникает вопрос: как нейроны могут защититься от потенциально смертельной гипергликемии?

Ответ: никак.

И есть еще одна особенность нейронов, продиктованная их функцией: они не запасают гликоген. Отчасти это свойство постоянно «работающих» клеток. Допустим, запас гликогена постоянно сокращающихся кардиомиоцитов значительно ниже других миоцитов. И постоянно работающее сердце 80% энергетических потребностей закрывает бета-оксидацией жиров. Другая функциональная особенность – постоянная потребность в энергии и строительных белках. Активность мышц вариабельна, поэтому они запасают гликоген на случай повышения активности.

Давайте вспомним на что может быть расходована глюкоза и переложим это на нейроны:

  • гликоген (нейроны не запасают);
  • пируват (цикл Кребса, синтез углеродных «строительных блоков);
  • пентозо-фостафный путь (синтез нуклеиновых кислот и восстановителя NADPH);

В данном случае мы знаем, что у нейронов подавлена фосфоглюкокиназа, один из ферментов, необходимых для гликолиза [1]. Этот фермент катализирует необратимую (с гидролизом АТФ) реакцию фосфорилирования фруктозы-6-фосфата до фруктозы-1,6-бифосфата. Образование фруктозы-1,6-бифосфата – это committed step на метаболической развилке между пируватом и пентозо-фосфатным путём.

Получаем, что нейроны функционально блокируют образование пирувата из глюкозы, а вместо этого пускают глюкозу через пентозо-фосфатный путь на пуриновый метаболизм и нахождение в восстановленном состоянии.

Это логично сочетается с функцией «вечной» жизни: нуклеиновые кислоты для ремонта и поддержки ДНК и синтеза белков; NADPH, чтобы находится в более восстановленном энергетическом состоянии.

Однако возникает вопрос: Откуда энергия, если глюкоза уходит в основном не на энергию, а на PPP?

Может сложиться верное впечатление, что с «сахарным» вопросом нейронам не справиться без посторонней помощи. И она имеется. У нейронов есть «клетки-няньки» астроциты, которые вполне возобновимы и могут хранить незначительные запасы гликогена.

Лактатный шатл астроцитов и глюкоза

Глюкоза

Лактатный шаттл астроцитов – гипотеза, медленно набирающая обороты в научном мире. Суть ее состоит в том, что глюкоза перерабатывается в астоцитах до лактата, астроциты впоследствии в формате cell-to-cell передают лактат нейронам. Это не отменяет того факта, что нейроны могут сами использовать глюкозу. Лактат, напомню, это восстановленный пируват. Он окисляется до пирувата с образованием NADH.

Возвращаясь к транспортным мембранным белкам заметим, что у астроцитов доминирует GLUT1, менее аффинитивный глюкозе, чем GLUT3. В целом это так. Однако, например, омега-3 ненасыщенные жиры усиливают экспрессию GLUT1 белков (потребление глюкозы астроцитами в данном случае).

Еще один «удар» по GLUT3 наносит глутамат. Нейротрансмиттер, связанный с процессами возбуждения нервной системы. Возбуждение – повышение активности – повышенная энергопотребность. Но глутамат-опосредованное возбуждение снижает аффинитивность глюкозе GLUT3 (нейроны) и повышает аффинитивность глюкозе GLUT1 (астроциты).

Вот некоторые доводы в пользу лактатной гипотезы:

  • Гипотеза позволяет решить текущие противоречия в метаболизме глюкозы нейронами (откуда энергия, если глюкоза на нуклеиновые кислоты и восстановленное состояние);
  • In vivo уже сумели продемонстрировать cell-to-cell лактатный шатл;
  • Изомер лактат дегидогеназы (LDH-5), который способствует восстановлению пирувата до лактата доминирует в астроцитах, а в нейронах доминирует изомер фермента (LDH-1), который связан в большей степени с утилизацией лактата;
  • В плане транспорта лактата у астроцитов активны клеточные белки MCT1/MCT4, с низкой аффинитивностью лактату, но которые могут его транспортировать наружу; у нейронов более выражен изомер MCT2, более аффинитивный лактату и связанный забором его в клетку;
  • Противоположные данные (что у астроцитов более аффинитивные лактату клеточные белки) были In vitro и в нефизиологических условиях (температура 20 и 25 градусов), что все вместе могло изменить форму и функцию белков.
  • Гипотеза выдерживает особенности работы GLUT1 и GLUT3 в виду внешних факторов и специфики связки астроциты/нейроны

Выводы:

  • Глюкоза потребляет глюкозу в основном для синтеза нуклеиновых кислоты и нахождения в восстановленном состоянии;
  • Гипотеза лактатного шатла астроцитов логично дополняет наши проблемы в понимании метаболизма глюкозы нейронами

Остающийся вопрос: как это всё противостоит гипергликемии?

Ответ прежний: никак; лактатный шатл лишь позволяет объяснить некоторые противоречия в метаболизме глюкозы.

Глюкоза же после анализа ее метаболизма нейронами приобретает еще большее значение. От нее зависит структурная целостность ДНК нейронов. И в меньшей степени энергопотребление.

По всем анализируемым выше признакам мозг адаптировался чувствовать минимальные значения глюкозы, а организм научился ее синтезировать в ходе глюконеогенеза.

Глюкоза vs Жир

Пора сравнить жиры (кетоны) и глюкозу как источник энергии для мозга. Гемато-энцефалический барьер не пропускает длинноцепочные жировые кислоты, поэтому организм использует кетоны, которые он синтезирует из ацетил-коА при недостатке глюкозы и избытке ацетил-коА. Чего мы добиваемся голоданием или кето-диетой.

Переменная Глюкоза Жир/кетоны
Реактивные виды кислорода Мало при умеренном потреблении;

Много (потенциальный вред митохондриям) при гипергликемии

Умеренно (вызывает адаптационные изменения)
Способность быстро генерировать АТФ Да,
NADH-ориентированный метаболизм через 1й комплекс (2,5 АТФ, выкачка протонов);Пиковая возможность генерировать энергию упираться в доступность NAD+. И скорость получения последнего при помощи восстановления пирувата до лактата.
Нет,

Есть предел «пиковой бета-оксидации»

Сбалансированный метаболизм NADH/FADH2 1:2, 1:3 (FADH2 дает 1,5 АТФ и не выкачивает протоны)

Транспорт в клетки Пассивные мембранные транспортеры (GLUT) со специфичной тканям чувствительностью глюкозе;

Ряд GLUT-комплексов требуют присутствия инсулина (например, GLUT4 в мышцах и адипоцитах)

VLDL;

Кетоны для мозга (VLDL не может пересекать ГЭБ)

Способы утилизации Пируват (белки, цикл Кребса итд);

Гликоген;

Пентозо-фосфатный путь (пуриновый метаболизм, NADPH итд)

Ацетил Ко-А (только на энергию в цикле Кребса)

Синтез жиров и гормонов

Последствия переедания Лактоацидоз;

Псевдогипоксия;

Гликизирование белков

Кетоны большом количестве также снижают pH крови (как при диабетическом кетоацидозе), но даже при продолжительном голодании таких показаний сложно добиться.

 

Вывод до банальности очевиден, глюкоза – более универсальная молекула. Это и топливо, и строительные блоки для белков и нуклеиновых кислот. Кетоны/жиры – резервное топливо для периода голодания (что мы и имитируем кето).

Выводы о глюкозе

  • У глюкозы есть 3 принципиальных пути утилизации:
    • Гликоген (для мозга неактуально);
    • Пируват (цикл Кребс, строительный блок для белков, жиров);
    • Пентозо-фостатный путь (синтез нуклеиновых кислот, нахождение в восстановленном состоянии)
  • Глюкоза дает больше АТФ в секунду времени, но переедание глюкозой связано с как минимум тремя потенциально опасными моментами:
    • Лактоацидозом (вследствии необходимости восстанавливать NAD+ при помощи лактата);
    • Гликизированием (и нарушением функции белков);
    • Патологическим количеством ROS при объедании;
  • Нейроны адаптировались чувствовать малые количества глюкозы и с гипергликемией им самим не справиться;
  • Нейроны не синтезируют гликоген и у них отчасти подавлен синтез пирувата, он используют глюкозу в основном для поддержания целостности ДНК и нахождения в восстановленном состоянии (PPP);
  • Лактатный шатл астроцитов снабжает нейроны лактатом (легко окисляемым до пирувата с выделением NADH); лактатный шатл не защищает нейроны от гипергликемии;
  • Жиры – более энергоёмкая форма топлива, но из Ацетил-коА невозможно получить строительные блоки для синтеза белков. В жирах больше потенциальной и получаемой энергии, но в минуту времени жиры могут сгенерировать меньше энергии, чем глюкоза.
  • От гипергликемии нас может защитить только нас же мозг, у которого для этого есть всё необходимое.

Источники:

  1. Brain glucose transporters
  2. Sugar for the brain: the role of glucose in physiological and pathological brain function
  3. Pyruvate oxidation
  4. Cell Respiration Part 2: Aerobic Respiration (Transition Reaction & Kreb’s Citric Acid Cycle)
  5. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder
  6. Brain lactate metabolism: the discoveries and the controversies
  7. Is L-lactate a novel signaling molecule in the brain?
  8. Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy
  9. Glucose transporters in the 21st Century
  10. Glucose transporters: physiological and pathological roles
  11. Glucose transporters: structure, function and consequences of deficiency
  12. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy
  13. Brain glucose transporters
  14. Cell–cell and intracellular lactate shuttles
  15. Lactate shuttle – between but not within cells?
  16. The in vivo neuron-to-astrocyte lactate shuttle in human brain
Поделиться:

Обходные реакции и долголетие

Обходные реакции (bypass reactions) – это способ «создать» необходимую молекулу, которая «исчезает» в ходе необратимой реакции.

Самый очевидный пример bypass реакций – это глюконеогенез. Организм может создать глюкозу из аминокислот и триглицеридов, если в ней есть необходимость. Хочется рассмотреть побочную сторону подобных обходных реакций.

Для начала вспомним, что все реакции в теории обратимые. На практике же ряд реакций в организме необратимые. Обратная реакция будет термодинамически невыгодна, нет фермента, катализирующего обратную реакцию итд. Но есть обходные реакции. Это и рассмотрим.

Oxidation of Pyruvate and the Citric Acid Cycle

обратимые реакции

Известная метаболическая реакция. Катализация синтеза ацетил-коА. Ацетил-коА – важная для метаболизма энергическая молекула. Она запускает цикл Кребса. Это универсальный внутриклеточный энергетический посредник между субстратами (белки/жиры/углеводы) и энергией в химической форме (АТФ, ГТФ, NADH, FADH2). Как только нутриент был окислен до ацетил-кофермента А – назад пути нет. Углеродные основы этой молекулы могут быть использованы для получения энергии (цикл Кребса) или для запасания энергии (синтеза жиров). Но ни белки, ни углеводы уже не могут быть синтезированы из Ацетил-коА.

Пируват – конечный продукт гликолиза. Одно из звеньев глюконеогенеза. Источник энергии путем ферментации (до лактата). Источник углеродных основ для синтеза аминокислот. Пируват неплохо бы уметь восстанавливать. Но окисление пирувата до ацетил-коА – необратимая реакция.

Обратимые реакции позволяют восстанавливать нужные строительные блоки

Пример. Обратите внимания на АТФ/ГТФ.

H+ + PEP + ADP >> Pyruvate + ATP; + 1 АТФ

А теперь мы хотим восстановить PEP из пирувата. Для этого есть обходные реакции из 2 штук

  1. Pyruvate + HCO3 + ATP >> Oxaloacetate + ADP + Pi; — 1 АТФ
  2. Oxaloacetate + GTP >> PEP + GDP + CO2 + Pi; — 1 ГТФ

Чистая реакция двух последних:

Pyruvate + ATP + GTP >> PEP + ADP + GDP + Pi (- 1 АТФ; -1 ГТФ)

И сравним еще раз с изначальной:

H+ + PEP + ADP >> Pyruvate + ATP; (+ 1 АТФ).

Для восстановления PEP мы потратили больше энергии, чем извлекли из молекулы изначально.

Тоже самое с глюконеогенезом. На синтез глюкозы мы тратим больше энергии, чем извлекаем из нее. Это энергонеэффективный процесс, который использует организм, когда ему необходим тот или иной отсутствующий «строительно-углеродный блок».

Если при этом у нас не будет энергии, то все строительные блоки будут уходить на Ацетил-КоА, из которого аминокислот и глюкозы нам уже не синтезировать.

Это перекликается с теорией триажа Брюса Эймса. При неадекватном потреблении нутриентов вы лишаете организм строительных блоков. И при их общем недостатке организм будет синтезировать только жизненно важные.

Вывод:

какую диету вы бы не выбрали – следите за адекватным количеством нутриентов, витаминов и минералов в этой диете;
не надо надеяться на «внутренние ресурсы» своего организма; при недостатке нутриентов организм будет закрывать первоочередные потребности, не делая вас здоровее в долгосрочной перспективе.

P.S. Может ли быть так, что сильное падение глюкозы (3-3,5) на кето – следствие неоптимальной функции митохондрий (окислительного фосфорилирования). Глюконеогенез – АТФ-зависимый процесс. Он заметно подавляется при недостаточной дыхательной функции митохондрий.

Поделиться: