Фототерапия, митохондрии и мозг

Фототерапия, митохондрия и мозг

Фототерапия или биофотомодуляция или low level laser therapy (LLLT) – это терапия красными и ближними инфракрасными (БИК) спектрами света. Альтернативный и неинвазивный способ вмешательства в свое здоровье. Тема огромная, поэтому она будет в виде тезисов.

Чего-то антинаучного фототерапия из себя не представляет. Львиная часть публикаций ниже – команда Майкла Хэмблина из профильной лаборатории Гарварда/МТИ. Одна из самых необычных статей (про модуляции БИК структуры воды в митохондриях) напечатана в Nature [8], самом престижном в Мире научном журнале.

Фотобиология. База

Настоятельно рекомендую к просмотру лекции Александра Вунша [1, 2]. Тут в доступной форме вы услышите про роль света в биологии. Почему и как наши белки реагирует на спектры солнечного света.

Фототерапия. Технические моменты

Красный и ближний инфракрасный спектр лучше всего проникают в кожу.

  • В митохондриях есть фотодетекторы, белки реагирующие на определенные спектры света [7];
  • БИК свет (810 нм и 910 нм) проникают в мозг (тест на кадавре) до 3 см [4];
  • При этом даже при блокировке света шапочкой из фольги (в буквальном смысле, не шутка), эффекты терапии получаются системными [4];

Для меня это говорит о том, что мы (или даже лично я) пока не понимаем, как сигналы из фоторецепторов кожи передаются в митохондрии. Я лишь фиксирую то, что системный эффект есть. А почему это так – буду со временем спрашивать у компетентных биофизиков. Некоторые инсайты можно получить в китайском исследовании по доставке БИК света до белков клеток [8].

Несмотря на то, что лишь от 0,45% до 2,9% БИК излучения проникает на 3 см в скальп, череп, ткани мозги – мы можем говорить о системном воздействии на митохондрии и клетки тканей (те же нейроны).

Фототерапия имеет бифазный эффект, тем самым следуя правилу Арндта-Шульца [Arndt-Schultz law].

Принцип Арндта-Шульца:

  • небольшое количество стимулирует и дает положительный эффект;
  • большое количество подавляет и имеет негативный эффект;
  • чрезмерное количество смертельно.

Этот принципе применим, как видите, не только к лекарствам, но к свету. Количество кДж интересующиеся могут посмотреть в работах Хэмблина [7 и другие].

Фототерапия и митохондрии

Активация цитохром С (цэ) оксидазы (комплекса IV)

Пожалуй, самый известный эффект фототерапии. Под действием УФ-излучения и в принципе оксид азота NO проникает в цитохром цэ оксидазу, ковалентно связываясь (прочно) с железо-содержащими гемами и медью, и в итоге мешая работе дыхательной цепи переноса электронов [4, 5, 6, 7].

Фототерапия ближним инфракрасным светом высвобождает оксид азота NO из комплекса IV, цитохром С оксидазы, тем самым улучшая эффективность дыхательной цепи переноса электронов. Высвобождение NO в тканях также может иметь ряд положительных эффектов (сосудорасширяющих).

Увеличение скорости вращения АТФ-синтазы

Фототерапия БИК-спектром снижает вязкость воды, тем самым увеличивая скорость вращения АТФ-синтазы и выработку АТФ в целом [8].

TRP-рецепторы и высвобождение кальция

Transient receptor potential – это супер-семья рецепторов, куда входят ионные каналы. БИК излучение открывает кальциевые каналы. Точно механизм пока не ясен, но предположительно БИК спектр воздействует на воды в ионных каналах, что приводит к их открытию.

Снижение оксидативного стресса

Фотобиомодуляция активирует супероксиддисмутазу, снижает количество реактивных видов кислорода [7]. Технически там более сложная схема. Из серии генерация ROS – активация антиоксидативных транскрипторных факторов (странно, что Nrf2 еще не исследовали в этом плане) – подавление уровня ROS. Но как я писал в самом начале, эффект бифазный. Фотобиомодуляция может создать и слишком много реактивных видов кислорода.

Другие эффекты [7]

Активация гипоксичного транскрипторного фактора (HIF-1α). Напрашивается синергия с гипоксичной терапии для снижения митохондриальной гетероплазмии (количества подвержденных митохондрий).

Активация PGC-1α и PPARγ, что говорит о возможности влиять на липидный и гликолитический метаболизм.

Активация Akt, mTOR и снижение апоптоза клеток.

Хэмблин предполагал синергию биофотомодуляции с физическими нагрузками для роста митохондрий [7]. Но это находится вне сегодняшней заметки.

Фототерапия и неврологические расстройства

Основные эффекты БИК-фототерапии:

  • Увеличение выработки АТФ;
  • Нейрогенез и синапсогенез (BDNF, NGF);
  • Снижение воспаления (меньше IL-1β, чуть менее однозначно с TNFα, меньше IL-6, больше противовоспалительного TGF-β1;
  • Снижение апоптоза нейронов;
  • Ангиогенез и улучшение микроциркуляции;
  • Снижение эксайтотоксичности;
  • [предположительно] улучшают проникновение мезенхимальных стволовых клеток (MSCs) в мозг, что способствует очистке от β-амилоидных бляшек.

Фототерапия

Инсульты и черепно-мозговые травмы

Все вышеперечисленные эффекты положительно влияют на острые и хронические последствия инсульта и черепно-мозговых травм.

Фототерапия 630 нм и 830 нм (красный и БИК) в течение 10 минут за лоб (13,3 Дж/см2) улучшало время продуктивной работы за компьютером с 30 до 3 часов (после черепно-мозговой травмы) [4].

Болезнь Альцгеймера

В добавок в АТФ и митохондриях, увеличивался уровень c-fos белка [4]. Это непрямой маркер активности нейронов. Больше нейронной активности – больше c-fos. Применительно к болезни Альцгеймера это конечно же хорошо.

Порадовали на этот поприще и отечественные исследователи [10]. Они умело показали, что внутривенная фототерапия красным лазером была эффективнее мемантина или ривастигмина (стандартных фармакологических опций). В группе с фототерапией было заметное улучшение симптоматики и микроциркуляции, которое длилось 1-7 лет после терапии.

Фототерапия может рассматриваться как способ усилить когнитивную функцию.

Остальное

  • С болезнью Паркиноса одно исследование, где у пациентов улучшился Visual Analog Scale [4];
  • Применение LED 810 нм на лоб улучшало симптомы тревоги и депрессии;
  • Ноотропный эффект за счет вышеописанных эффектов;
  • Улучшение скоринга аберрантного поведения у больных аутизмом [13];

Помимо неврологии

Фототерапия в дерматологии

  • Утренний пре-кондишенинг БИК светом снижает урон кожи полуденными УФ-лучами (отсюда любители утренних солнечных ванн);
  • Снижение фотостарения;
  • Возможность как подавить, так и активировать MMP-1 (коллагеназа, разлагающая коллаген кожи) [11];
  • Потенциально положительные эффекты для проблемной кожи (прыщи, псориаз). У нас и иммуномодулирующий эффект, не забывайте;
  • Более быстрое заживление ожогов, шрамов, келоидных рубцов [12];
  • Возможное приминение при витилиго и депегментации [12];

Свет и тело

  • Снижение хронических мышечных болей [14, 15];
  • Улучшение восстановления после физических нагрузок [16]

Фототерапия и болезнь Хашимото

830 нм в лечение 5 недель улучшали микроциркуляцию паренхимы щитовидной железы и снижали про-воспалительные цитокины [17, 18]. Микроциркуляция паренхимы — скорее непрямой маркер улучшения симптомов аутоиммунного тиреоидита.

Еще много чего, если зарыться.

Фототерапия. Практика и устройства

Опций много. На нужны излучения красного спектра (635-700 нм) и ближнего инфракрасного спектра (в исследованиях обычно 800-1000 нм) в одном источник света.

Бюджетный вариант – Alibaba.com. Лампа красного и БИК спектра. Вариант А. Если я правильно понял, до 15 долларов США за 1 штуку;

Zepter. Medolight. Относительно дорогая швейцарско-польская игрушка за 300 евро. 640 нм и 880 нм, возможность пульсирующего света. Мощность до 1,6 Дж/см2

На amazon.com много подобных игрушек.

Личный опыт

Использую медолайт от Zepter. Беру их программу и модифицирую под себя.

Пока у меня:

  • 10 минут на область лобка (простата, профилактика, забота о втором сердце мужчины);
  • 10 минут на тестикулы (гипотеза о повышенном стероидогенезе клеток Лейдига);
  • реже 10 минут на лоб и на закрытые веки (глаза, восстановление головы);
  • еще реже душ на ночь в свете Медолайта.

Повышенный стероидогенез вроде бы есть. Точно пойму с тестами на больших промежутках времени. Душевые с красным и БИК светом хорошо восстанавливают (если потом сразу спать, без включения синего света).

Выводов не будет. Фототерапия – потенциально очень интересная вещь. В том числе синергичная с терапиями, диетами итд. Буду продолжать пробовать тестировать.

На это я сейчас смотрю как на элементарную по затратам интервенцию. Вроде очков блю-блокеров за 9 долларов. Улучшить качество жизни за 10-15 долларов (+ самодисциплина) – это очень неплохо, как мне кажется.

Источники:

  1. Living Photons — How Light Controls Matter;
  2. How natural & artificial light is impacting human’s endocrine system & hormones;
  3. Александр Вунш. Вводная лекция по фотоэндокринологии
  4. Shining light on the head: Photobiomodulation for brain disorders;
  5. Biphasic Dose Response in Low Level Light Therapy;
  6. MECHANISMS OF LOW LEVEL LIGHT THERAPY;
  7. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation;
  8. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery;
  9. Light Effect on Water Viscosity: Implication for ATP Biosynthesis;
  10. Dementia and Cognitive Impairment Reduction after Laser Transcatheter Treatment of Alzheimer’s Disease;
  11. Infrared and skin: Friend or foe;
  12. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring;
  13. Effects of Low-Level Laser Therapy in Autism Spectrum Disorder;
  14. Low-level laser therapy as a treatment for chronic pain;
  15. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain;
  16. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light;
  17. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound;
  18. Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study

 

Поделиться:

Астаксантин как средство для загара

Астаксантин – каротиниод, который можно использовать вместо довольно спорных «подмазок» для загара. Идею подсмотрел у Дмитрия Захарова в 2017-ом, если не раньше. Успешно опробовал в этом году.

Заметку можно будет разделить на 3 очень условных блока:

  • Астаксантин как антиоксидант и противо-воспалительное средство;
  • Астаксантин и подавление MMP-1;
  • Личный опыт;

Астаксантин и каротиноиды

Каротиноиды – сотни различных молекул, создающихся фотосинтезирующими микроорганизмами [1, 5]. Эти пигменты либо участвуют в фотосинтезе, либо помогают уменьшить урон солнечной радиации [1].

Каротиноиды могут выполнять функцию антиоксидантов и, при определенных обстоятельствах, прооксидантов [5].

астаксантин

Астаксантин как антиоксидант в 10-раз мощнее других каротиноидов, таких как лютеин, зеаксантин и в 100 раз мощнее α-токоферола [1]. Прооксидативной активностью неизвестен.

Иммунная система. Мнения расходятся. Консенсус есть в том, что астаксантин повышает концентрацию INFγ и IL-6 (интерферон гамма) [7, 8]. Этот цитокин секретируется Th1 клетками и помогает фагоцитам уничтожать микробы внутри фагоцитов. Что полезно как для активации адаптивной иммунной системы в целом, так и для некоторых коварных бактерий, которые умеют избегать фагоцитоза иммунными клетками (туберкулез, например). Интерлейкин-6 также про-воспалительный и связан с иммунным ответом бактериям (в частности необходим для эффективной защиты от бактерий пневмонии) [8].

Также принятие 2 мг астакстантина в течение 8 недель увеличивало выраженность белков LFA-1 молекулами лейкоцитов (помогают лейкоцитам попадать в воспаленную ткань) [8]. На общую популяцию иммунных клеток астаксантин не влиял, но усиливал активность NK-клеток и увеличивал субпопуляции T и B-клеток [8].

Противовоспалительный эффект. Очевидно, что астаксантин снижает окислительный урон ДНК, помогая сохранять ее целостность. Также он снижал концентрацию С-реактивного белка [8]. Антиоксидативный эффект астаксантина предотвращает активацию про-воспалительного транскрипторого фактора NF-kB (nuclear factor kappa B) [7]. Nf-kB связан с цитокинами IL-1β и TNF-α. Снижает ли астаксантин TNF-α и IL-2 – по исследованиям информация противоречивая [7, 8, 9]. Я предположу, что в исследованиях, где отмечали инактивацию NF-kB наблюдали снижение TNF-α, когда речь не шла о NF-kB, то TNF-α не снижался.

Астаксантин в довольно большой дозировке (40 мг), снижает болевые симптомы и воспаление ЖКТ при диспепсии и инфекции H. Pylori. [10]. Также астаксантин усиливал барьерную функцию слизи (mucus), что мешало этой бактерии расплодиться [5].

На боль в мышцах после тренировок и уровень креатин-киназы астаксантин, естественно, не повлиял [11]. Не очень понятно, что исследователи хотели увидеть. Энергетический кризис ткани антиоксидантом не снимается.

У одного из производителей на упаковке есть заявление, что астаксантин помогает при боле в суставах, но при этом их исследования самой компании сложно назвать качественными [12]. Тем не менее мне кажется, что этот эффект имеет место быть. У меня в поездке довольно сильно болели плечи из-за многочасового ношения отягощения 19-20 кг без возможности размять плечи. Плечи болели при поднятии рук выше плеча. Не было перекладин для виса (отличная профилактика и лечение некоторых травм плеча), но боль при возобновлении плаванья на море и примерно 20 мг астаксантина в день перестали болеть всего за 2 дня (обычно это около недели). Астаксантин снижает уровень кислородных радикалов, количество ЦОГ-2 и выраженность NF-kB [13]. При этом в отличии от НСПВП астаксантин не является competitive inhibitor фермента ЦОГ-2. Исследование [13] также говорит о том, что астаксантин подавляет формирование NO и работу iNOS (фермента, синтезирующего NO). Последний факт можно интерпретировать и со знаком «+» и со знаком «-» в зависимости от контекста.

Фертильность. В одном из исследований астаксантин улучшал параметры спермы у мышей-диабетиков [6]. Предположительно за счет уменьшения количества кислородных радикалов. Учитывая информацию выше о подавлении NO/iNOS, в теории можно ожидать снижение качества эрекции (сам не сталкивался).

Астатаксантин и матрикс металлопротеиназа 1 (MMP1)

Астаксантин эффективно снижает концентрацию ферменов MMP [1, 2, 4, 5, 18]. Другое название MMP-1 – fibroblast collagenase или interstitial collagenase. Это критически важный фермент для морфогенеза эпителия [14], также катализируются реакции «распада» ряда экстраклеточных молекул: коллагена (понятно из названия), IGFBP-3, IGFBP-5, IL-1β, L-селектин, овостатин, ФНОα и ряд других [14].

С точки зрения патогенеза MMP-1 чрезмерно выраженная интерстициальная коллагеназа и полиморфизмы, это вызывающие, связаны с атриальной фибриляцией [4, 15], ХОБЛ [16], некоторыми видами рака [4, 16], ревматоидным артритом [14, 17] и так далее.

Другие MMP ферменты имеют схожие функции и могут деградировать коллаген и эластин.

Астаксантин, MMPs и фотостарение

Солнечный ожог приводит к повышенной выраженности MMP-ферментов, которые деградируют коллаген и эластин кожи [2, 3].

Во время загара мы хотим получить UVA-излучение (например, для эффективого лечения анемии) или UVB-излучения для сульфатной формы витамина D3. Крема от загара блокируют УФ-спектр. Что защищает нас от загара, но во многом делает присутствие на солнце бесполезным.

Возможность астаксантина подавлять выраженность MMP-1 и родственных коллагеназ снижает урон кожи от УФ-излучения. Урон зависит от интенсивности УФ-излучения [2] и вашего цвета кожи. Поэтому надо знать пределы своих возможностей, иначе никакой астаксантин вам не поможет.

Астаксантин, немного практических рекомендаций и личный опыт

Астаксантин считает условно безопасным в дозировке до 40 мг в день. Дело в том, что исследований с большими дозировками просто не было. И в принципе, как видите по информации выше, количество и глубина исследований молекулы пока довольно зачаточное.

О побочных эффектах ничего не известно. Пока принято считать, что их нет в рекомендуемых дозировках.

Я загорал с 10 до 12-13 часов и с 17 до 18:30, за час до первого похода на пляж (где цеплял полуденное Солнце) употреблял 12-16 мг астаксантина, перед вечерним походом на пляж – 4-8 мг. В следующий раз буду брать капсулы сразу по 12 мг.

У меня от природы белая и тонкая кожа, которая на солнце быстро краснеет и сгорает. В этом года я ни разу серьезно не обгорел, даже когда позволял себе чуть больше, чем положено. При хождении днем астаксантин оказался прекрасным помощником – лицо краснело, но ощущений ожога для же при 2-3 часа на дневной жаре не было.

Загар также ложился как будто бы быстрее, но сходит, к сожалению, тоже привычно быстро.

В целом я остался очень довольным опытом. Ранее загар без кремов в виду моей белой и тонкой кожи всегда приводит к ожогам, а иногда и необходимости «подмазываться». В этот раз все было прекрасно, но еще раз хочу напомнить, что я хорошо чувствую солнечные ожоги и понимаю, когда без последствий уже не позагораешь.

Астаксантин. Выводы

  • Астаксантин –каротиноид, обладающий рядом полезных функций:
    • Мощный антиоксидант (в 10 раз сильнее других каротиноидов);
    • Иммуномодулирующий (активация про-воспалительных цитокинов, что будет полезно при некоторых бактериальных инфекциях) и противо-воспалительный эффект (снижение количества ЦОГ-2 / COX-2 фермента, снижение уровня про-воспалительных цитокинов);
      • Так как астаксантин снижает воспаление в целом, а не блокирует функцию ЦОГ-2 как НСПВП, то у него нет минусов этих лекарств;
    • Подавление MMP-коллагеназ, что имеет ряд терапевтических эффектов;
  • Отдельно из которых стоит отметить возможность использовать астаксантин как натуропатическое средство снижения вреда УФ-излучения коже, при этом получая все плюсы УФ-излучения. Кремами от загара / для загара я больше пользоваться не собираюсь.

Источники:

  1. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration;
  2. Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts;
  3. Matrix-degrading Metalloproteinases in Photoaging;
  4. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease;
  5. Astaxanthin: a review of its chemistry and applications;
  6. Dietary supplementation with astaxanthin may ameliorate sperm parameters and DNA integrity in streptozotocin-induced diabetic rats;
  7. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin;
  8. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans;
  9. Anti-inflammatory effects of astaxanthin in the human gingival keratinocyte line NDUSD-1;
  10. Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: A prospective, randomized, double blind, and placebo-controlled study;
  11. Astaxanthin supplementation does not attenuate muscle injury following eccentric exercise in resistance-trained men;
  12. BioAstin Helps Relieve Pain from Rheumatoid Arthritis;
  13. Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin;
  14. MMP-1: the elder of the family;
  15. MMP-1 and MMP-3 polymorphism and arrhythmia recurrence after electrical cardioversion in patients with persistent atrial fibrillation;
  16. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer;
  17. Matrix metalloproteinases: role in arthritis;
  18. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes
Поделиться:

Витамин D. Сила синергии

Витамин D (а точнее D3) – не новая тема для этого журнала. Случай Д.С. («большие» по официальным меркам дозировки D3 и витамина А без признаков токсичности последнего) натолкнули на цепочку размышлений о синергии D3 с другими молекулами.

Витамин D и Витамин А

Исследование 1942-го года выявляло как витамин D и витамин А по отдельности и вместе влияют на простудные заболевания [1, 2]. Синергия была (но об этом чуть позже). Куда важнее выводы, проиллюстрированные рисунком ниже.

витамин d

Витамин D в третьей группе был 300 000 UI в день, а витамин A  40 000 UI в день. Исследователи, конечно, не звери и дозировку до этих значений поднимали постепенно, начиная с 30 000 и 7 000 МЕ соответственно.

Вывод: витамин D и витамин A снижают потенциальную токсичность друг друга.

Что примечательно комбо D3 и А не только избавляло от потенциальной токсичности друг друга, но и продемонстрировало наилучший результат. Витамин D и витамин А продемонстрировали синергию в профилактике простудных заболеваний.

На текущий момент для нас не секрет, что и витамин D и витамин А модулируют иммунную систему [3, 4, 5]. Если мы внимательно прочитаем статью об эффектах этих витаминов на иммунную систему [3], то можем наметить следующие очаги синергии (простыми словами):

  • Укрепление иммунной системы кишечника (и не только кишечника);
  • Профилактика остеопороза и других «костных» заболеваний;
  • Здоровая кожа;

В полку употребляющих оба витамина в больших дозировках прибыло (в моем лице, конечно же).

Витамин D и сульфаты

Не секрет, что на солнце у нас образовывается сульфатная форма витамина D3 [6]. И что у этой формы есть свои особенности. В частности, сульфатная форма не приводит к росту концентрации кальция в плазме [7]. Возникают вопросы, что же тогда делает витамин D сульфат, если с точки зрения метаболизма кальция это довольно неэффективная молекула.

Ответ приходит с неожиданной стороны. Возьмём похожую молекулярную структуру, допустим «дедушку» D3, холестерин. Сульфат (да и далеко не только его) в клетке может быть добавлен к холестерину/витамину D3 (в последнем случае в теории) в аппарате Гольджи.

Холестерин-сульфат (прошу простить мне неверное упрощение) концентрируется в митохондриях и ядрах клеток. Fe-S кластеры – важный элемент передачи электрона в комплексе I, но я боюсь уйти в еще большие дебри, поэтому этот момент оставим. Если коротко, это хорошо для выработки АТФ.

Сульфатная группа делает холестерин амфифильным (имеющим и полярные и неполярные части). Что в 10 раз улучшает его способность проникать через мембраны [9].

Вот вам и объяснение, почему D3, получаемый на солнце, имеет другой эффект, чем наши с вами добавки.

И давайте предположим, что наш аппарат Гольджи может добавлять сульфатную группу к D3, то при прочих равных нас будет ограничиваться концентрация сульфатов в нашем организме.

Добавим при этом то, что часть бонусов D3 и Холестерин-сульфата очень схожи [10].

Сульфаты синтезируются в нашей коже на солнце из сульфидов. Холестерин-сульфат, гликозамингликаны (GAGs, еще одна большая тема) создаются в аппарате Гольджи. Но нам по-прежнему нужны сульфаты.

Мой выбор – потреблять их с серистой минеральной водой, тем самым частично компенсируя то, что d3 в капсулах не совсем тоже самое, что d3-сульфат, вырабатывающийся на Солнце. Заодно вы снабжаете свои клетки очень важным «строительным блоком», чьи бонусы не только созвучны витамину D3, но и выходят за его рамки.

Витамин D и витамин К

Самая предсказуемая часть заметки. Про это сказано уже достаточно в ряде источников. [11, 12] и многие другие. К2 (в первую очередь МК4) снижает токсичность D3. Также витамин D и витамин К усиливают действие друг друга.

Выводы

  • Витамин А и витамин К защищают от токсичности больших (на сотни тысяч) дозировок D3 и обладают с D3 рядом синергичных эффектов;
  • Витамин D в свою очередь снижает токсичность витамина А (которой проще добиться), а вместе они имеют значимых взаимодополняющих эффектов; особенно на иммунную систему (в том числе кишечника);
  • На солнце (УФ-спектр, привет кремам от Солнца) образовывается сульфатная форма D3, которая не влияет на метаболизм кальция, но за счет амфифильности (наличии гидрофильным и гидрофобных частей) гораздо «живее» выполняет все остальные функции D3.
  • D3 может быть синтезирован эндогенно из холестерина. Холестерин и гликопротеины получают сульфатную группу в аппарате Гольджи. И в целом снабжение сульфатами организм – очень хорошая идея: это частично компенсирует потребление несульфатного D3 и будет обладать рядом других бонусов. Мой выбор – серистая минеральная вода, но это могут быть и продукты;
  • Важность сульфатов я даже не поскреб. Но это отдельная и большая тема.

Источники:

  1. Massive doses of vitamins A and D in the prevention of the common cold
  2. Is Vitamin D Safe? Still Depends on Vitamins A and K! Testimonials and a Human Study
  3. Vitamin effects on the immune system: vitamins A and D take centre stage
  4. Retinoids are important cofactors in T cell activation
  5. Regulation and function of autophagy in retinoic acid mediated therapy of myeloid leukemia and breast cancer
  6. 25-Hydroxyvitamin D3 3-sulphate is a major circulating form of vitamin D in man
  7. Synthesis and biological activity of vitamin D3 3 beta-sulfate. Role of vitamin D3 sulfates in calcium homeostasis
  8. https://bileacid.vcu.edu/people/ren.html
  9. Graphical depiction of cholesterol sulfate in the red blood cell membrane. Adapted from Cooper and Hausman: The Cell: A Molecular Approach, Fifth Edition
  10. https://www.slideserve.com/suki/cholesterol-sulfate-and-heart-disease
  11. Vitamin D toxicity redefined: vitamin K and the molecular mechanism
  12. Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy
Поделиться:

мтДНК, эволюция и сезонные циклы

мтДНК – это ДНК митохондрий, которое у нас есть в дополнении к нашей основной ДНК клетки. Наследование мтДНК от матери открыл Даг Уоллес (Doug Wallace). Исследователь, обязательный к чтению для всех, интересующихся митохондиями и метаболическими процессами в целом.

Написанное ниже – осмысление и упрощение его статьи Why Do We Still Have a Maternally Inherited Mitochondrial DNA? Insights from Evolutionary Medicine. Я позволю себе сделать акценты на том, что интересует лично меня.

Темы для обсуждения в рамках заметки:

  • Почему у митохондрий существует отдельное ДНК?
  • Почему мтДНК наследуется по материнской линии?
  • Что на примере могут означать различие гаплогрупп мтДНК?
  • Традиционная кето-рубрика, может ли это что-то значить для кето?

мтДНК, причины существования

Митохондрии в наших клетках – это продукт симбиоза паразитической α-протоцианобактерии и клетки. Получившийся симбиоз стал основой для всей многоклеточной жизни. И из этого единичного симбиоза возникла вся существующая многоклеточная жизнь. Вероятно, это было так хорошо и так успешно, что не оставило конкурентам и шанса.

Появление хлоропласт – такой же процесс, но произошедший примерно на 50 млн раньше, чем у наших предков. Растения упомянул не случайно. Как видно по рисунку из статьи Уоллеса, весь метаболизм живых организмов построен вокруг конвертации солнечной энергии в удобный для нас эквивалент. И изучение фотосинтеза может быть серьезным фундаментом для метаболических исследований человека.

Большую часть своей ДНК новообразованная митохондрия передала в ядро. Но 37 генов остались в мтДНК. Почему? Логично предположить, что этого не случилось бы без веской причины.

мтДНК

Гены мтДНК кодируют белки дыхательной цепи переноса электронов и ряд ферментов матрикса митохондрий. Белок для этого синтеза импортируется из цитозоли.

Белки дыхательной цепи выполняют важную функцию – они синтезируют АТФ. Комплексы I, III, IV, выкачивают протоны в межмембранное пространство, создавая тем самым Н+ градиент. И уже созданный градиент обеспечивает вращение V-димеров АТФ-синтазы как финальный этап синтеза АТФ.

При наличии некоей константы оптимальных вариаций белков для синтеза АТФ, организм бы перенес функцию мтДНК в ядерную ДНК. Очевидно, что была огромная эволюционная необходимость, чтобы этого (за исключением ДНК-кодирования комплекса V у пары видов) не случалось.

Из этого мы получаем вывод: мтДНК существует для того, чтобы процессы внутри матрикса митохондрий (а это не только синтез АТФ) оперативно адаптировались к изменениям внешней среды. Менее защищенная, более подверженная воздействию из вне и как следствие более изменчивая мтДНК. Митохондрии – сенсор внешней среды, которые регулирует наши энергетические процессы в соответствии с воздействием окружающего мира.

Наследование мтДНК по материнской линии

Даг Уоллес открыл со своей командой интересный факт – ДНК митохондрий, вне редчайший патологических случаев, наследуется строго по материнской линии.

У сперматозоидов мтДНК в 200 раз меньше, чем у ооцитов (яйцеклеток). Белки дыхательной цепи сперматозоидов отличаются от аналогичных белков ооцитов. Поэтому иммунная система яйцеклетки уничтожает мужскую мтДНК в течение 24 часов после оплодотворения.

Это обратная сторона изменчивости мтДНК, которая мутирует в 20 раз быстрее ДНК в ядре клетки. Чрезмерный мутагенез может неожиданной мутацией поставить крест на всей популяции. Чтобы уменьшить подобную вероятность необходимо мтДНК немного ограничить в скорости мутаций. Природа организовала это блестящего – наследование от 1 родителя. Я на всякий случай напомню, что преимущество двуполой системы перед однополой как раз в повышенной изменчивости (читайте адаптации к среде) первого варианта.

С медицинской точки зрения имеет смысл исследовать (и исследуются) патологичные мутации митохондриальной ДНК.

Практический пример роли изменчивости мтДНК на гаплогруппах

Речь идет, конечно же, о гаплогруппах мтДНК, а не Y хромосомы. Гаплогруппы – определенные последовательности белков митохондриальной ДНК. Они распространены географически, что еще раз подтверждает выводы из сути наличия мтДНК.

Интересно, что генетическое разнообразие людей в Африке выше, чем во всем остальном мире. Вся не-Африка произошла от африканской гаплогруппы L3.

Давайте для конкретного примера вернемся к сперматозоидам. Подвижность их жгутиков обеспечивается в основном АТФ. И эффективность синтеза АТФ будет для фертильности критичной в данном случае. У экваториальных негров подвижность спермы выше, чем у северян.

Огромное значение для синтеза АТФ играет расстояние между белковыми комплексами. Ник Лэйн в одной из своих книг демонстрировал, что разница 1 Ангстрем может снизить эффективность передачи электронов в 10 раз!

Ближе (в теплых климатах) белки дыхательной цепи – лучше синтез АТФ, выше фертильность. В этом помогает и вода, которая при нагревании сжимается, а при охлаждении расширяется. Именно это объясняет курортные беременности. На летнем солнце улучается синтез АТФ и как следствие подвижность сперматозоидов.

Чем дальше белки дыхательной цепи, тем проще разобщать окислительное фосфорилирование. В таком случае потенциал Н+ градиента расходуется не на синтез АТФ, а на генерацию тепла в рамках термогенеза. Напомню, что во время моржевания мы активируем цепочку: стресс холода – бета-адренорецепторы – жировая капля митохондрий – термогенин – разобщение OxPHOS – сжигаение жира для генерации тепла.

В данном случае наши митохондрии реагируют на количество солнца/климат и либо усиливается фертильность, либо человек лучше адаптируется к выживанию к холоду. Это лишь единичный пример функции мтДНК на практическом примере.

мтДНК, растения и сезонные циклы

Вот мы и добрались до кето. Я не зря последовательно упоминал солнце. Напомню, что глюкоза – продукт химической фиксации растениями солнечной энергии. И когда вокруг нас летом много солнца – вокруг нас много глюкозы. А зимой глюкозы нет, нутриентов вокруг меньше, для организма логичнее сжигание жиров/кетонов и для согрева, и в рамках кетоза.

Главный смысл личной моей кето-диеты – имитация сезонных циклов избытка/недостатка глюкозы в окружающей среде. В современном мире недостатка глюкозы нет. Мы заставляем наши митохондрии противоречить тем сигналам, которые они получали бы из окружающей среды.

Сезонность моей кето-диеты – ночь длиннее дня – кето, день длиннее ночи – обычное питание. Серая зона межсезонья остается на мой выбор. Пока это октябрь-март кетогенной диеты. Я всего лишь стараюсь не мешать тем механизмам сезонной адаптации, которые уже заложены в мои митохондриальные гены.

Выводы:

  • мтДНК и митохондрии в целом обеспечивает метаболическую адаптацию к изменениям во внешней среде и являются сенсором, который реагирует метаболической адаптацией на изменения во внешней среде;
  • мтДНК передается по материнской линии, чтобы снизить вероятность патологических мутаций у этой изменчивой структуры;
  • Пример региональной адаптации – расстояние между белками ЭТЦ, у южан упор на фертильность, у северян – на термогенез и выживание на холоде;
  • Кето-диета используется мной для имитации естественных циклов избытка глюкозы и недостатка глюкозы. Все это очень логично завязывается на продолжительность дня.
Поделиться:

Витамин D3. Дефицит на солнце

Витамин D3 образуется в коже при воздействии UVB-лучей. Употреблять витамин D3 в «больших» дозировках – «мода» последних лет 5. Тот редкий случай, когда привычка пришла из мира врачей, и ее сложно назвать плохой. Общепринято, что солнце лучше добавок витамина D3, но остаются вопросы:

  • Почему принимая витамин D3 по 5000 МЕ в день в течение нескольких лет, уровень 25(OH)D3 чаще всего бывает не только ниже 50 нмоль/л, но и ниже 30 нмоль/мл?
  • В каких количествах витамин D3 не является токсичным?
  • Почему есть дефицит витамина D в «южных» странах? И что с этим можно сделать?

Витамин D3 и токсичность

Витамин D3 начали активно применять в первой половине ХХ века, заметив его положительный эффект у пациентов с ревматоидным артритом. Дневные дозы D3 увеличивали до 200-300 тысяч МЕ, что приводило к заметным нежелательным явлениям. Затем дневная рекомендованная доза снизилась до 400 МЕ, что сейчас почти общепринято считается недостаточным. Правда, как не сложно догадаться, находится между этими значениями.

Витамин D3

Текущие исследования говорят о том, что витамин D3 не токсичен при дозировках до 30 000 ME в день. При употреблении в течение нескольких месяцев [4, 5].

Оптимальная дозировка D3

По идее дозировка должна быть привязана к желаемым значениям концентрации 25(OH)D3 в крови. Традиционно многие хотят добиться результата в 50+ или 70+ нмоль/литр. Люди с генетическими дефектами рецепторов витамина D иногда вынуждены поднимать концентрацию витамина еще больше.

Большинство людей находятся между 20 и 30 нмоль/литр [5]. И с другой стороны довольно много случаев, когда долгосрочное употребление 3-5 тысяч МЕ в течение нескольких лет не позволяет людям преодолеть значение в 30 нмоль/литр.

8895 МЕ в день необходимы 97,5% людей, чтобы достичь концентрации 25(OH)D3 ≥ 50 нмоль/литр [4].

Естественно, что эти значения зависят от массы тела, географии проживания и других факторов. Но логично будет заменить общепринятые 2-5 тысячи МЕ на 5-10 тысяч МЕ. С учетом значений токсичности, нам еще есть куда отступать.

Дефицит D3 в солнечных странах [1, 2, 3]

 

Мы закончили с легкими вопросами, и остался последний elephant in the room. Почему при избытке солнца и экзогенной формы человек всё ещё может испытывать дефицит витамина D?

На мой взгляд при увлечении биологией и фармакологией не стоит забывать про физику. Белковые структуры живых организмов связывают клеточную воду, за счет усиления дипольного момента молекул воды остовами полипептидных цепей развернутых белков.

Белок может влиять на структурную организацию молекул воды вокруг себя и на свойства этой воды. Но на электронные и индукционные силы внутри белков можно воздействовать внешним излучением. Например, неестественным электромагнитным излучением (nnEMF, non-native Electromagnetic Frequencies), которых в современном мире в избытке. Возьмите хотя бы сотовые телефоны и Wi-Fi.

По ссылке [7, 8] вы можете увидеть, что это действительно так. Это лишь один из немногих примеров. Глутаминовая кислота и фенилаланил меня pH при воздействии магнитного поля. Они теряли протоны, кинетика конвертации глутаминовой кислоты в ГАМК увеличивалась до 50%.

Исследователи предположили, что nnEMF меняют организацию молекул воды вокруг белка, что приводит к изменения гидрофобных взаимодействий.

Возвращая всё к гипотезе Гилберта Линга, nnEMF воздействуют на физические взаимодействия белковых структур, что приводит к тому, что белки могут удерживать меньше воды.

Проще говоря, неестественные излучения современного Мира делают людей обезвоженными. И изменяют взаимодействия белков, воды и ионов. Что мешает как образованию витамина D на солнце, так и образованию в почках активной формы 25(OH)D3 в почках.

Выводы:

  • При долгосрочном применении Витамин D3 не токсичен в дозировках до 30 000 МЕ в день;
  • Большинству людей придется принимать 9-10 тысяч МЕ в день, чтобы поднять концентрацию 25(OH)D3 в крови выше 50 нмоль/л;
  • Неестественные электромагнитные излучения современного Мира мешают синтезу витамина D;
  1. Vitamin D deficiency in Thailand
  2. Vitamin D: a critical and essential micronutrient for human health
  3. A systematic review of vitamin D status in populations worldwide
  4. The Big Vitamin D Mistake
  5. Vitamin D Is Not as Toxic as Was Once Thought: A Historical and an Up-to-Date Perspective
  6. Risk assessment for vitamin D
  7. Deprotonation of glutamic acid induced by weak magnetic field: an FTIR-ATR study
  8. Influence of magnetic fields on the hydration process of amino acids: vibrational spectroscopy study of L-phenylalanine and L-glutamine
  9. TIME #11 CAN YOU SUPPLEMENT SUNLIGHT?
Поделиться: