VFP #007. Недостатки кетогенных диет?

Тема текущего подкаста — недостатки кетогенных диет. Хотя вышел гимн глюкозе

2:50 — мифы о вреде кето;

13:30 — гликолитические клетки и микробиота;

26:30 — рост катехоламинов и симпатический тонус;

42:28 — pH и фильтрация метаболических кислоты;

54:30 — рост билирубина и возможные проблемы с ЖКТ;

59:10 — метформино-подобный эффект кето;

1:11:30 — финальный флейм; фертильность, митохондрии, динитрофенол и митохондриальные яды

 

Презентация на Google.Drive — можно скачать, удобно на смарфоне, работают ссылки;

Презентация на SpeakeDeck — чуть удобнее смотреть, чем на Google, но ссылки не работают;

 

P.S. 

Подкаст, который вы сейчас услышите вызвал массу негативной реакции в кето-сообществе. А именно:

  • к тем, кто делился моими публикациями — набегали кето-адепты, которые уверяли, что я «под препаратами», что я давно забанен в кето-группах (забанили после выхода подкаста), что я из обиды сделал «тонкую дезу», что со мной переписывались и я всем их это сказал;
  • меня несколько раз просили снять подкаст;
  • при попытке опубликовать этот покаст в кето-группе люди получали сообщения, что у меня много непроверенной информации о функции мозга (ЛОЛ);
  • админы кето-группы не осудили действия миньонов, забанили меня в группе;
  • мне вменяли в вину, что от отвращаю неофитов от кето;
  • админы кето-группы простят транскрипт для беседы — хм, я до этого несколько раз говорил, что мне это не совсем удобно + все тезисы со ссылками есть в презентации + я уверен, что в транскрипции они будут придираться к мелочам, говоря какие они умные и где я соврал.

Еда — новая религия. К сожалению все причастные из кето-сообщества показали себя с отвратительной стороны. Когда я писал о пользе кето — они делились моими статьями, как только я взвешенно прокомментировал риски кето (что тоже необходимо делать) — я получил ушат грязи;

Поделиться:

Vladimir Fokin Podcast #003. Дмитрий Захаров

Говорим о кето, тренировках, митохондриях, работе со своей психикой.

Дмитрий — хорошо известный в «кето-тусовке» человек с огромным количеством знаний по диетам, тренировкам, изменению себя. Все, кто пересекается с Дмитрием какое-то время, знают, что он неиссякаемый источник глубоких озарений по целому ряду важных тем.

На текущий момент он консультирует на людей по темам похудания, кето-диеты, тренировкам — выполняет сложную, но столь необходимую фукнцию наставника.

https://www.instagram.com/dmitriy_s_zakharov/

https://www.facebook.com/dmitriy.zakharov.357

Поделиться:

Фототерапия, митохондрии и мозг

Фототерапия, митохондрия и мозг

Фототерапия или биофотомодуляция или low level laser therapy (LLLT) – это терапия красными и ближними инфракрасными (БИК) спектрами света. Альтернативный и неинвазивный способ вмешательства в свое здоровье. Тема огромная, поэтому она будет в виде тезисов.

Чего-то антинаучного фототерапия из себя не представляет. Львиная часть публикаций ниже – команда Майкла Хэмблина из профильной лаборатории Гарварда/МТИ. Одна из самых необычных статей (про модуляции БИК структуры воды в митохондриях) напечатана в Nature [8], самом престижном в Мире научном журнале.

Фотобиология. База

Настоятельно рекомендую к просмотру лекции Александра Вунша [1, 2]. Тут в доступной форме вы услышите про роль света в биологии. Почему и как наши белки реагирует на спектры солнечного света.

Фототерапия. Технические моменты

Красный и ближний инфракрасный спектр лучше всего проникают в кожу.

  • В митохондриях есть фотодетекторы, белки реагирующие на определенные спектры света [7];
  • БИК свет (810 нм и 910 нм) проникают в мозг (тест на кадавре) до 3 см [4];
  • При этом даже при блокировке света шапочкой из фольги (в буквальном смысле, не шутка), эффекты терапии получаются системными [4];

Для меня это говорит о том, что мы (или даже лично я) пока не понимаем, как сигналы из фоторецепторов кожи передаются в митохондрии. Я лишь фиксирую то, что системный эффект есть. А почему это так – буду со временем спрашивать у компетентных биофизиков. Некоторые инсайты можно получить в китайском исследовании по доставке БИК света до белков клеток [8].

Несмотря на то, что лишь от 0,45% до 2,9% БИК излучения проникает на 3 см в скальп, череп, ткани мозги – мы можем говорить о системном воздействии на митохондрии и клетки тканей (те же нейроны).

Фототерапия имеет бифазный эффект, тем самым следуя правилу Арндта-Шульца [Arndt-Schultz law].

Принцип Арндта-Шульца:

  • небольшое количество стимулирует и дает положительный эффект;
  • большое количество подавляет и имеет негативный эффект;
  • чрезмерное количество смертельно.

Этот принципе применим, как видите, не только к лекарствам, но к свету. Количество кДж интересующиеся могут посмотреть в работах Хэмблина [7 и другие].

Фототерапия и митохондрии

Активация цитохром С (цэ) оксидазы (комплекса IV)

Пожалуй, самый известный эффект фототерапии. Под действием УФ-излучения и в принципе оксид азота NO проникает в цитохром цэ оксидазу, ковалентно связываясь (прочно) с железо-содержащими гемами и медью, и в итоге мешая работе дыхательной цепи переноса электронов [4, 5, 6, 7].

Фототерапия ближним инфракрасным светом высвобождает оксид азота NO из комплекса IV, цитохром С оксидазы, тем самым улучшая эффективность дыхательной цепи переноса электронов. Высвобождение NO в тканях также может иметь ряд положительных эффектов (сосудорасширяющих).

Увеличение скорости вращения АТФ-синтазы

Фототерапия БИК-спектром снижает вязкость воды, тем самым увеличивая скорость вращения АТФ-синтазы и выработку АТФ в целом [8].

TRP-рецепторы и высвобождение кальция

Transient receptor potential – это супер-семья рецепторов, куда входят ионные каналы. БИК излучение открывает кальциевые каналы. Точно механизм пока не ясен, но предположительно БИК спектр воздействует на воды в ионных каналах, что приводит к их открытию.

Снижение оксидативного стресса

Фотобиомодуляция активирует супероксиддисмутазу, снижает количество реактивных видов кислорода [7]. Технически там более сложная схема. Из серии генерация ROS – активация антиоксидативных транскрипторных факторов (странно, что Nrf2 еще не исследовали в этом плане) – подавление уровня ROS. Но как я писал в самом начале, эффект бифазный. Фотобиомодуляция может создать и слишком много реактивных видов кислорода.

Другие эффекты [7]

Активация гипоксичного транскрипторного фактора (HIF-1α). Напрашивается синергия с гипоксичной терапии для снижения митохондриальной гетероплазмии (количества подвержденных митохондрий).

Активация PGC-1α и PPARγ, что говорит о возможности влиять на липидный и гликолитический метаболизм.

Активация Akt, mTOR и снижение апоптоза клеток.

Хэмблин предполагал синергию биофотомодуляции с физическими нагрузками для роста митохондрий [7]. Но это находится вне сегодняшней заметки.

Фототерапия и неврологические расстройства

Основные эффекты БИК-фототерапии:

  • Увеличение выработки АТФ;
  • Нейрогенез и синапсогенез (BDNF, NGF);
  • Снижение воспаления (меньше IL-1β, чуть менее однозначно с TNFα, меньше IL-6, больше противовоспалительного TGF-β1;
  • Снижение апоптоза нейронов;
  • Ангиогенез и улучшение микроциркуляции;
  • Снижение эксайтотоксичности;
  • [предположительно] улучшают проникновение мезенхимальных стволовых клеток (MSCs) в мозг, что способствует очистке от β-амилоидных бляшек.

Фототерапия

Инсульты и черепно-мозговые травмы

Все вышеперечисленные эффекты положительно влияют на острые и хронические последствия инсульта и черепно-мозговых травм.

Фототерапия 630 нм и 830 нм (красный и БИК) в течение 10 минут за лоб (13,3 Дж/см2) улучшало время продуктивной работы за компьютером с 30 до 3 часов (после черепно-мозговой травмы) [4].

Болезнь Альцгеймера

В добавок в АТФ и митохондриях, увеличивался уровень c-fos белка [4]. Это непрямой маркер активности нейронов. Больше нейронной активности – больше c-fos. Применительно к болезни Альцгеймера это конечно же хорошо.

Порадовали на этот поприще и отечественные исследователи [10]. Они умело показали, что внутривенная фототерапия красным лазером была эффективнее мемантина или ривастигмина (стандартных фармакологических опций). В группе с фототерапией было заметное улучшение симптоматики и микроциркуляции, которое длилось 1-7 лет после терапии.

Фототерапия может рассматриваться как способ усилить когнитивную функцию.

Остальное

  • С болезнью Паркиноса одно исследование, где у пациентов улучшился Visual Analog Scale [4];
  • Применение LED 810 нм на лоб улучшало симптомы тревоги и депрессии;
  • Ноотропный эффект за счет вышеописанных эффектов;
  • Улучшение скоринга аберрантного поведения у больных аутизмом [13];

Помимо неврологии

Фототерапия в дерматологии

  • Утренний пре-кондишенинг БИК светом снижает урон кожи полуденными УФ-лучами (отсюда любители утренних солнечных ванн);
  • Снижение фотостарения;
  • Возможность как подавить, так и активировать MMP-1 (коллагеназа, разлагающая коллаген кожи) [11];
  • Потенциально положительные эффекты для проблемной кожи (прыщи, псориаз). У нас и иммуномодулирующий эффект, не забывайте;
  • Более быстрое заживление ожогов, шрамов, келоидных рубцов [12];
  • Возможное приминение при витилиго и депегментации [12];

Свет и тело

  • Снижение хронических мышечных болей [14, 15];
  • Улучшение восстановления после физических нагрузок [16]

Фототерапия и болезнь Хашимото

830 нм в лечение 5 недель улучшали микроциркуляцию паренхимы щитовидной железы и снижали про-воспалительные цитокины [17, 18]. Микроциркуляция паренхимы — скорее непрямой маркер улучшения симптомов аутоиммунного тиреоидита.

Еще много чего, если зарыться.

Фототерапия. Практика и устройства

Опций много. На нужны излучения красного спектра (635-700 нм) и ближнего инфракрасного спектра (в исследованиях обычно 800-1000 нм) в одном источник света.

Бюджетный вариант – Alibaba.com. Лампа красного и БИК спектра. Вариант А. Если я правильно понял, до 15 долларов США за 1 штуку;

Zepter. Medolight. Относительно дорогая швейцарско-польская игрушка за 300 евро. 640 нм и 880 нм, возможность пульсирующего света. Мощность до 1,6 Дж/см2

На amazon.com много подобных игрушек.

Личный опыт

Использую медолайт от Zepter. Беру их программу и модифицирую под себя.

Пока у меня:

  • 10 минут на область лобка (простата, профилактика, забота о втором сердце мужчины);
  • 10 минут на тестикулы (гипотеза о повышенном стероидогенезе клеток Лейдига);
  • реже 10 минут на лоб и на закрытые веки (глаза, восстановление головы);
  • еще реже душ на ночь в свете Медолайта.

Повышенный стероидогенез вроде бы есть. Точно пойму с тестами на больших промежутках времени. Душевые с красным и БИК светом хорошо восстанавливают (если потом сразу спать, без включения синего света).

Выводов не будет. Фототерапия – потенциально очень интересная вещь. В том числе синергичная с терапиями, диетами итд. Буду продолжать пробовать тестировать.

На это я сейчас смотрю как на элементарную по затратам интервенцию. Вроде очков блю-блокеров за 9 долларов. Улучшить качество жизни за 10-15 долларов (+ самодисциплина) – это очень неплохо, как мне кажется.

Источники:

  1. Living Photons — How Light Controls Matter;
  2. How natural & artificial light is impacting human’s endocrine system & hormones;
  3. Александр Вунш. Вводная лекция по фотоэндокринологии
  4. Shining light on the head: Photobiomodulation for brain disorders;
  5. Biphasic Dose Response in Low Level Light Therapy;
  6. MECHANISMS OF LOW LEVEL LIGHT THERAPY;
  7. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation;
  8. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery;
  9. Light Effect on Water Viscosity: Implication for ATP Biosynthesis;
  10. Dementia and Cognitive Impairment Reduction after Laser Transcatheter Treatment of Alzheimer’s Disease;
  11. Infrared and skin: Friend or foe;
  12. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring;
  13. Effects of Low-Level Laser Therapy in Autism Spectrum Disorder;
  14. Low-level laser therapy as a treatment for chronic pain;
  15. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain;
  16. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light;
  17. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound;
  18. Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study

 

Поделиться:

Гипер-гипо кислородная терапия не увеличивает число митохондрий!

Гипер-гипо кислородная терапия не приводит к росту количества митохондрий. К этой терапии надо добавлять что-то, что приводит к росту митохондрий.
 
Немного формальной логики
Митохондрия позволила приручить нам окислительный метаболизм. Эта органелла тесно связана с кислородом.
При недостатке кислорода она будет хиреть, терять «дыхательную» функцию.
 
«HIF-1α (гипоксичный транскрипторный фактор) опосредованное подавление MYC и PGC-1 приводит к снижению митохондриального биогенеза»
https://www.frontiersin.org/articles/10.3389/fcell.2015.00042/full
 
Гипербарическая оксигенация позволяет снижать количество митохондрий с подавленной окислительной функцией (что само по себе важно). Кето делает тоже самое. Поэтому это комбо и использует для лечения некоторых видов рака.
 
Биогенез митохондрий вызывается повышенной энергетической потребностью ткани.
Поэтому больше всего митохондрий в сердце, которое работает постоянно. Относительно мало МТ, допустим, в коже.
Энергостанция появляется там, где есть потребность в большем количестве энергии.
Нужны митохондрии в адипоцитах — закаливаемся, в миоцитах — специфичным образом тренируемся, в нейронах — заставляет эти участки работать. И всегда можно прибегнуть к допингу в виде PQQ.
 
Гипоксичная адаптация хорошо нам известна по плавцам и ныряльщика, вот часть ее эффектов:
— гипоксическая адаптация (ГА) так же влияет на адаптацию к жаре и холоду. существует перенос адаптированности
— при ГА возрастает VO2max
— меняется метаболизм в митохондриях
— у женщин с ожирением в постменопаузе + диабет II типа, ГА приводит к повышению чувствительности к лептину, снижению веса, снижение глюкозы натощак…
— у девушек 21-25 лет ГА приводит к снижению веса, процента жира, рост глюкозы крови (но в пределах нормы), снижение чсс и давления.
— интервальная гипоксическая-гипероксическая тренировка у пожилых людей приводит к когнитивным улучшениям + увеличивается дистанция пройденная в 6 минутном тесте
— Гипоксическая тренировка приводит к увеличению жизненной емкости легких
— ГА сопровождается брадикардией, улучшением утилизации кислорода в том числе нервной системой
— ГА лучше проходит если использовать нырятельный рефлекс, то есть в холодном душе подставлять лицо под струю с задержкой дыхания
— интервальная гипоксическая тренировка улучшает показатели требующие выносливости у пловцов и дзюдоистов. Что немного странно — у дзюдоистов еще и растет прыжок в длину.
— интервальная гипоксическая тренировка улучшает аккомодацию глаз в вечернее время и при усталости (тестировалось на водителях).
— интервальная гипоксическая тренировка приводит к росту гемоглобина и увеличению ударного объема сердца (при общем сохранении минутного объема кровообращения)
 
Поделиться:

Эпигенетика, «либертарианский» взгляд

Эпигенетика – злободневная и противоречивая тема современной науки. Противоречивая, потому что нет единого научного консенсуса в том, что входит понятие эпигенетика.

Я буду исходить из того, что эпигенетические изменения – это наследуемые изменения функции или экспрессии генетического аппарата, не связанные с последовательностью нуклеотидов в ДНК.

Эпигенетика часто сводится к метилированию ДНК и [пост-трансляционной] модификации «хвостиков» гистонов. Я обнаглею и позволю себе посмотреть на этот вопрос немного шире и более фрагментарно одновременно, чтобы подчеркнуть связь генетического аппарата с внешней средой и образом жизни. Содержание постараюсь сделать доступным и буду приводить примеры с конкретными заболеваниями.

Короткое содержание заметки:

  • мтДНК, митохондриальные болезни, заместительная митохондриальная терапия;
  • Unstable repeats;
  • Модификация гистонов;
  • Генетический импринтинг;
  • Х-инактивация у женщин;

Эпигенетика, митохондрии и мтДНК

Пожалуй, самый спорный раздел из вышеуказанных, но без митохондрий никуда.

Митохондрия – это энергостанции наших клеток, база всей многоклеточной жизни на планете. Про мтДНК и эволюцию я писал ранее на основе работ Doug Wallace. Также рекомендую книги Ника Лэйна для ознакомления с историей симбиоза наших предков с митохондриями.

Коротко, митохондрии:

  • Свой набор ДНК, митохондриальные ДНК, мтДНК;
  • В митохондрии примерно 5 копий мтДНК;
  • Размер мтДНК 16,5 килобаз, против 3 гигабаз ядерной ДНК;
  • мтДНК содержит 14 protein coding regions, ядерная ДНК содержит примерно 20 000 protein coding regions;
  • мтДНК мутирует в 20 быстрее ДНК;
  • мтДНК передается (за редчайшим исключением) только от матери

Гены митоходрий кодируют только белки дыхательной цепи переноса электронов, места синтеза АТФ. Большинство необходимых белков митохондрии импортируют из цитозоли. Современный консенсус состоит в том, что было сильное эволюционное давление на то, чтобы определенные белки дыхательной цепи кодировали сами митохондрии.

мтДНК меньше защищена от внешнего воздействия, чем ядерная ДНК, поэтому митоходрия является сенсором изменений окружающего мира. Я ранее приводил в пример климат и расстояние между цитохромами дыхательной цепи. В теплом климате цитохромы ближе к друг другу, что уменьшает энергопотери в процессе переноса электронов и улучшает эффективность синтеза АТФ. Что, допустим, положительно влияет на подвижность спермы, которая обеспечивается как раз АТФ. На холоде же дыхательные комплексы дальше друг от друга. При удалении комплексов друг от друга передача электронов будет сопровождаться большими теплопотерями (даже не говоря о термогенине и разобщении H+ градиента), что является полезным для проживания на этом самом холоде.

Или более простой пример. Голод или сытость определяются наличием отсутствием реактивных видов кислорода, затем через UCP2 (разобращающий белок 2) влияет на POMC нейроны гипоталамуса и затем на чувство сытости. А наличие/отсутствие реактивных видов кислородов в митоходриях – это наличие/отсутствие носителей электронов NADH/FADH2 (итога метаболизма еды) в дыхательной цепи.

Я надеюсь, что вкратце сумел аргументировать, почему эпигенетика как тема не может идти отдельно от разговора от митохондриях. Один из важнейших наших детекторов внешней среды, который запускает многие адаптивные процессы. Как элементарный пример.

Митохондриальные болезни, синдром Ли и пересадка здоровых митохондрий

Митохондриальные болезни могут быть связаны не только с мтДНК, но и с 100+ генов ДНК, что задачу только усложняет [1]. В целом болезни, связанные с мутациями именно мтДНК имеют частоту распространения 1:5000.

Как пример серьезного недуга именно митохондриальной природы – синдром Ли (иногда пишут Лея) [2], он же подострая некротизирующая энцефаломиопатия. Примерно ¾ случаев обусловлены мутациями ДНК, ¼ — мтДНК. Итог схожий – недостаток окислительного фосфорилирования (в частности работы цитохрома С) приводит к недостатку энергоснабжения клеток и последующей ранней смерти.

Mitochondrial replacement therapy – это одно из последних серьезных новаторств ЭКО. Берется ДНК из ооцита пациентки c патологией мтДНК и пересаживается в цитозоль ооцита женщины-донора со здоровыми митохондриями, откуда вынули ДНК донора [3, 4]. В новостях это называли «ребенок трёх родителей» [4].

Я не зря выбрал синдром Ли. Первой пациентой, ооцитам которой успешно пересадили здоровые митохондрии, была женщина с синдромом Ли [4]. Этические споры до сих пор не утихают, что никак не мешает совсем молодому человеку жить по крайней мере без синдрома Ли и недостатка в АТФ.

Эпигенетика и unstable repeats

В некоторых частях ДНК есть так называемые нестабильные повторения, когда небольшая последовательность нуклеодитов многократно повторяется [5, 6, 7]. Считается, что в некоторых частях ДНК механизмы починки и репликации «соскальзывают», давая подобные повторения [5, 6, 7].

Проблема нестабильных повторений в том, что они с поколениями могут увеличиваться [5-6]. Увеличение unstable repeats с поколениями называется anticipation.

Unstable repeats, HTT ген и хорея Гентингтона

Хорея Гентинтона – в основном генетическая болезнь. Белок huntingtin, роль которого в развитии профильного заболевания толком не ясна, кодирует ген HTT, находящийcя в позиции 4p16.3 (короткая «ручка» 4-й хромосомы). Когда число повторений становится слишком большим – белок теряет свою функцию, и последующие поколения постепенно приходят к болезни Гентингтона.

Обычно есть такая пирамида, в случае хореи Гентингтона это:

  • Доброкачественная (benign) вариация — Меньше 26 повторений CAG;
  • Промежуточная (intermediate) вариация – 27 – 35 повторений CAG;
  • Пре-мутация – 36-40 повторений CAG;
  • Патологическая мутация – больше 40 повторений CAG

Может ли эпигенетика включать наследуемую патологию роста количества нестабильных повторений в HТТ гене? Будем считать, что я много могу себе позволить в собственной же заметке.

Эпигенетика и пост-трансляционная модификация гистонов

3 гигабазы ДНК занимают примерно 2 метра, будучи (в воображении) вытянутыми в длину. Эти 2 метра кода упакованы по хромосомам.

Хроматин – вещество хромосом, которое кроме ДНК включает в себя РНК и белки.

Нуклеосомы – это часть ДНК, обвитая вокруг октамерных белков гистонов (обычно два раза).

Эпигенетика

Гистоновый октамер состоит из 2 копий гистонов H2A, H2B, H3 и H4, как это видно на рисунке выше. N (и реже С) терминалы гистонов проходят пост-трансляционную модификацию. К ним ковалентно могут присоединяться различные молекулы. Например, метиловая группа (CH3) или ацетиловая группа (C2H3O).

Проблема модификации гистонов к комплексности и объемности происходящего. Допустим, H3K4 – самая изученная часть гистонов, ее метилирование и ацетилирование усиливают транскрипцию гена, а метилирование H3K9 на том же H3 гистоне подавляет транскрипцию гена. Разные виды пострансляционных модификаций разных частей гистонов делает картину эпигеном/геном куда более сложной, чем сам геном.

Очевидный пример – возрастные изменения [9]. Какие-то модификации гистонов и хроматина аккумулируются, какие-то теряются.

Эпигенетика и генетический импринтинг

Метилированию может подвергнуться и сама ДНК. В зависимости от места метилирования по отношению к гену эта модификация может как усилить экспрессию гена, так и прекратить его выраженность вовсе.

«Рычажки» метилирования ДНК сбрасываются примерно на 5-й день существования зиготы. Но иногда эпигенетика преподносит нам сюрприз – метилирование участков ДНК частично сохраняется. Это и есть генетический импринтинг.

Классический пример генетического импринтинга – синдромы Ангельмана и Прадера-Вилли.

Эпигенетика преподнесла сюрпризы, потому что со временем оказалось, что у двух редких и различных заболеваний схожая природа – удаление в 15q11 части хромосомы в виду импринтинга (конкретный механизм пропущу, потому что начинаю скучать во время написания).

Синдром Ангельмана – удаление отцовской части 15q11 и выраженность материнской. Синдром Прадера-Вилли – наоборот.

Материнская и отцовская части транскриптируются на встречу друг другу. ДНК у нас двойная спиральная, поэтому может транскриптироваться в обе стороны.

Либо продолжительная и некодирующая белок РНК помешает выраженности UBE3A гена, и мы столкнемся с синдром Прадера-Вилли. Или, как в случае с выраженностью материнской копии, у нас не будет трансприптирован ряд генов (синих на рисунке выше), важных для развития в том числе нервной системы.

Эпигенетика и деактивация Х-хромосомы у женщин

Женщины – генетическая мозаика. Ряд несознательных граждан склонных это интерпретировать как телегонию. То, что контакты женщин с мужчинами (особенно половые), оставляют в женщинах свой генетический след. Я бы не писал про эту глупость, если бы так часть ее не видел. Но учитывая то, что в каждом из нас есть части хромосом двух бабушек и двух дедушек, то найти различные части ДНК у женщин не так сложно, учитывая следующий феномен.

Мужчины, как вы помните, ХУ, а женщины ХХ. Пол определяет наличие/отсутствие У хромосомы. Но у женщин активна только одна Х хромосома. В каждой клетке какая именно Х хромосома будет активна выбирается более или менее случайно.

XIST ген кодирует большую РНК (которая не транслируется в белок). Эта РНК деактивирует одну из Х хромосом.

С этим феноменом связан эффект manifesting carriers, когда женщины частично экспрессируют патогенный фенотип, связанный с рецессивным Х-аллелем (нужна хотя бы одна рабочая копия, чтобы не было болезни): и в каких-то клетках у нас «здоровая» вариация, в каких-то патогенная.

P.S. Выводов не будет. Для себя я понял, что писать общеобразовательные вещи в формате заметок мне скучно: нет моей мысли, нет моей аналитики, не надо создавать структуру для общего понимания итд.

Источники:

  1. Mitochondrial Disorders Overview;
  2. Leigh syndrome;
  3. Biomedicine: Replacing the cell’s power plants (Nature, 2016);
  4. First ‘three person baby’ born using new method;
  5. Unstable Triplet Repeat Diseases;
  6. R loops stimulate genetic instability of CTG·CAG repeats (PNAS, 2010);
  7. Genetic diseases caused by expandable repeats — dynamic mutations by Dr. István Balogh, Dr. János Kappelmayer, Dr. József Tőzsér (2011);
  8. HTT gene
  9. Epigenetic Regulation in Neurodegenerative Diseases;
  10. Histone modifications (Nature, Figure);
Поделиться: