VFP #040. Воспаление, вирусы и Микс 93

https://ruketo.ru/bosx

Ссылка на сопроводительную презентацию

В подкасте освящены темы:

  • Роль лейкотриенов и простагландинов в воспалении;
  • Разница в эффектах этих двух липидов;
  • Регуляторное подавление синтеза лейкотриенов как возможно более мягкий способ влиять на воспаление;
  • Роль 5-LOX фермента в резкости иммунного ответа вирусным вторжениям;
  • 5-LOX фермент в возможной про-восплалительной роли омега-3 жирных кислот;

Микс 93:

  • противовосплаительное средство;
  • противовирусное средство;
  • при первых двух проблемах ноотропное;
  • анти-эйдж эффект за счет эффективной борьбы с первыми двумя проблемами

Микс 93:

  • Полипренолы с убихинолом:
  • Клеточный сок смолы босвеллии священной;
  • Клеточный сок куркумы;

Как применять:

  • Встряхнуть!
  • 1 чайную ложку под язык и подержать или просто проглотить;
  • Повторить на следующий день
Поделиться:

Бор. Nothing Boring About Boron

Бор рассматривается как важный элемент для здоровья костей. Статья ниже прекрасно суммирует другие важные функции этого микронутриента. Коротко:
1). Бор важен для остеогенеза и «здоровья костей»;
2). Бор ускоряет заживление ран за счет воздействия на ферменты фибробласт;
3). Улучшает биодоступность тестостерона, эстрогена и витамина D;
4). Бор усиливает абсорбцию магния;
5). Снижает уровень маркеров воспаления: С реактивного белка и ФНОальфа;
6). Увеличивает количество ферментов-антиоксидантов: супероксид дисмутазы, каталазы и глутатион пероксдазы;
7). Защищает от токсичности тяжелых металлов и вызванного пестицидами оксидативного стресса;
8). Улучшает электрическую активность мозга, когнитивные показатели и краткосрочную память у пожилых людей;
9). Положительно влияет на синтез и активность таких важных молекул как SAMe и NAD+;
10). Превентивный и терапевтический эффект в ряде видов рака: простаты, легких, шейки матки, множественной и неходжкинской лимфомы;
11). Может снизить нежелательные явления некоторых лекарств химиотерапии;

Сейчас вся «функциональная медицина» смотрит свободный тестостерон. Большая часть тестостерона связана мелками плазмы: ГСПГ, альбумином и транскортином. Тестостерон в связанном виде не может (из-за размера) проникать в мелкие капилляры.
Уже 2-й способ после крапивы увеличить свободный тестостерон, никак не влияя на общий.

Увеличение времени концентрации эстрадиола и Д3 тоже неплохо. Подрастет уровень D3 и эстрадиол тоже анаболический гормон. В частности он связан с нормальной секрецией гормона роста. При «вбитом» вниз референса эстрадиоле у вас могут быть проблемы с ГР и его производными.

Поделиться:

Витамин D. Сила синергии

Витамин D (а точнее D3) – не новая тема для этого журнала. Случай Д.С. («большие» по официальным меркам дозировки D3 и витамина А без признаков токсичности последнего) натолкнули на цепочку размышлений о синергии D3 с другими молекулами.

Витамин D и Витамин А

Исследование 1942-го года выявляло как витамин D и витамин А по отдельности и вместе влияют на простудные заболевания [1, 2]. Синергия была (но об этом чуть позже). Куда важнее выводы, проиллюстрированные рисунком ниже.

витамин d

Витамин D в третьей группе был 300 000 UI в день, а витамин A  40 000 UI в день. Исследователи, конечно, не звери и дозировку до этих значений поднимали постепенно, начиная с 30 000 и 7 000 МЕ соответственно.

Вывод: витамин D и витамин A снижают потенциальную токсичность друг друга.

Что примечательно комбо D3 и А не только избавляло от потенциальной токсичности друг друга, но и продемонстрировало наилучший результат. Витамин D и витамин А продемонстрировали синергию в профилактике простудных заболеваний.

На текущий момент для нас не секрет, что и витамин D и витамин А модулируют иммунную систему [3, 4, 5]. Если мы внимательно прочитаем статью об эффектах этих витаминов на иммунную систему [3], то можем наметить следующие очаги синергии (простыми словами):

  • Укрепление иммунной системы кишечника (и не только кишечника);
  • Профилактика остеопороза и других «костных» заболеваний;
  • Здоровая кожа;

В полку употребляющих оба витамина в больших дозировках прибыло (в моем лице, конечно же).

Витамин D и сульфаты

Не секрет, что на солнце у нас образовывается сульфатная форма витамина D3 [6]. И что у этой формы есть свои особенности. В частности, сульфатная форма не приводит к росту концентрации кальция в плазме [7]. Возникают вопросы, что же тогда делает витамин D сульфат, если с точки зрения метаболизма кальция это довольно неэффективная молекула.

Ответ приходит с неожиданной стороны. Возьмём похожую молекулярную структуру, допустим «дедушку» D3, холестерин. Сульфат (да и далеко не только его) в клетке может быть добавлен к холестерину/витамину D3 (в последнем случае в теории) в аппарате Гольджи.

Холестерин-сульфат (прошу простить мне неверное упрощение) концентрируется в митохондриях и ядрах клеток. Fe-S кластеры – важный элемент передачи электрона в комплексе I, но я боюсь уйти в еще большие дебри, поэтому этот момент оставим. Если коротко, это хорошо для выработки АТФ.

Сульфатная группа делает холестерин амфифильным (имеющим и полярные и неполярные части). Что в 10 раз улучшает его способность проникать через мембраны [9].

Вот вам и объяснение, почему D3, получаемый на солнце, имеет другой эффект, чем наши с вами добавки.

И давайте предположим, что наш аппарат Гольджи может добавлять сульфатную группу к D3, то при прочих равных нас будет ограничиваться концентрация сульфатов в нашем организме.

Добавим при этом то, что часть бонусов D3 и Холестерин-сульфата очень схожи [10].

Сульфаты синтезируются в нашей коже на солнце из сульфидов. Холестерин-сульфат, гликозамингликаны (GAGs, еще одна большая тема) создаются в аппарате Гольджи. Но нам по-прежнему нужны сульфаты.

Мой выбор – потреблять их с серистой минеральной водой, тем самым частично компенсируя то, что d3 в капсулах не совсем тоже самое, что d3-сульфат, вырабатывающийся на Солнце. Заодно вы снабжаете свои клетки очень важным «строительным блоком», чьи бонусы не только созвучны витамину D3, но и выходят за его рамки.

Витамин D и витамин К

Самая предсказуемая часть заметки. Про это сказано уже достаточно в ряде источников. [11, 12] и многие другие. К2 (в первую очередь МК4) снижает токсичность D3. Также витамин D и витамин К усиливают действие друг друга.

Выводы

  • Витамин А и витамин К защищают от токсичности больших (на сотни тысяч) дозировок D3 и обладают с D3 рядом синергичных эффектов;
  • Витамин D в свою очередь снижает токсичность витамина А (которой проще добиться), а вместе они имеют значимых взаимодополняющих эффектов; особенно на иммунную систему (в том числе кишечника);
  • На солнце (УФ-спектр, привет кремам от Солнца) образовывается сульфатная форма D3, которая не влияет на метаболизм кальция, но за счет амфифильности (наличии гидрофильным и гидрофобных частей) гораздо «живее» выполняет все остальные функции D3.
  • D3 может быть синтезирован эндогенно из холестерина. Холестерин и гликопротеины получают сульфатную группу в аппарате Гольджи. И в целом снабжение сульфатами организм – очень хорошая идея: это частично компенсирует потребление несульфатного D3 и будет обладать рядом других бонусов. Мой выбор – серистая минеральная вода, но это могут быть и продукты;
  • Важность сульфатов я даже не поскреб. Но это отдельная и большая тема.

Источники:

  1. Massive doses of vitamins A and D in the prevention of the common cold
  2. Is Vitamin D Safe? Still Depends on Vitamins A and K! Testimonials and a Human Study
  3. Vitamin effects on the immune system: vitamins A and D take centre stage
  4. Retinoids are important cofactors in T cell activation
  5. Regulation and function of autophagy in retinoic acid mediated therapy of myeloid leukemia and breast cancer
  6. 25-Hydroxyvitamin D3 3-sulphate is a major circulating form of vitamin D in man
  7. Synthesis and biological activity of vitamin D3 3 beta-sulfate. Role of vitamin D3 sulfates in calcium homeostasis
  8. https://bileacid.vcu.edu/people/ren.html
  9. Graphical depiction of cholesterol sulfate in the red blood cell membrane. Adapted from Cooper and Hausman: The Cell: A Molecular Approach, Fifth Edition
  10. https://www.slideserve.com/suki/cholesterol-sulfate-and-heart-disease
  11. Vitamin D toxicity redefined: vitamin K and the molecular mechanism
  12. Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy
Поделиться:

Витамин D3. Дефицит на солнце

Витамин D3 образуется в коже при воздействии UVB-лучей. Употреблять витамин D3 в «больших» дозировках – «мода» последних лет 5. Тот редкий случай, когда привычка пришла из мира врачей, и ее сложно назвать плохой. Общепринято, что солнце лучше добавок витамина D3, но остаются вопросы:

  • Почему принимая витамин D3 по 5000 МЕ в день в течение нескольких лет, уровень 25(OH)D3 чаще всего бывает не только ниже 50 нмоль/л, но и ниже 30 нмоль/мл?
  • В каких количествах витамин D3 не является токсичным?
  • Почему есть дефицит витамина D в «южных» странах? И что с этим можно сделать?

Витамин D3 и токсичность

Витамин D3 начали активно применять в первой половине ХХ века, заметив его положительный эффект у пациентов с ревматоидным артритом. Дневные дозы D3 увеличивали до 200-300 тысяч МЕ, что приводило к заметным нежелательным явлениям. Затем дневная рекомендованная доза снизилась до 400 МЕ, что сейчас почти общепринято считается недостаточным. Правда, как не сложно догадаться, находится между этими значениями.

Витамин D3

Текущие исследования говорят о том, что витамин D3 не токсичен при дозировках до 30 000 ME в день. При употреблении в течение нескольких месяцев [4, 5].

Оптимальная дозировка D3

По идее дозировка должна быть привязана к желаемым значениям концентрации 25(OH)D3 в крови. Традиционно многие хотят добиться результата в 50+ или 70+ нмоль/литр. Люди с генетическими дефектами рецепторов витамина D иногда вынуждены поднимать концентрацию витамина еще больше.

Большинство людей находятся между 20 и 30 нмоль/литр [5]. И с другой стороны довольно много случаев, когда долгосрочное употребление 3-5 тысяч МЕ в течение нескольких лет не позволяет людям преодолеть значение в 30 нмоль/литр.

8895 МЕ в день необходимы 97,5% людей, чтобы достичь концентрации 25(OH)D3 ≥ 50 нмоль/литр [4].

Естественно, что эти значения зависят от массы тела, географии проживания и других факторов. Но логично будет заменить общепринятые 2-5 тысячи МЕ на 5-10 тысяч МЕ. С учетом значений токсичности, нам еще есть куда отступать.

Дефицит D3 в солнечных странах [1, 2, 3]

 

Мы закончили с легкими вопросами, и остался последний elephant in the room. Почему при избытке солнца и экзогенной формы человек всё ещё может испытывать дефицит витамина D?

На мой взгляд при увлечении биологией и фармакологией не стоит забывать про физику. Белковые структуры живых организмов связывают клеточную воду, за счет усиления дипольного момента молекул воды остовами полипептидных цепей развернутых белков.

Белок может влиять на структурную организацию молекул воды вокруг себя и на свойства этой воды. Но на электронные и индукционные силы внутри белков можно воздействовать внешним излучением. Например, неестественным электромагнитным излучением (nnEMF, non-native Electromagnetic Frequencies), которых в современном мире в избытке. Возьмите хотя бы сотовые телефоны и Wi-Fi.

По ссылке [7, 8] вы можете увидеть, что это действительно так. Это лишь один из немногих примеров. Глутаминовая кислота и фенилаланил меня pH при воздействии магнитного поля. Они теряли протоны, кинетика конвертации глутаминовой кислоты в ГАМК увеличивалась до 50%.

Исследователи предположили, что nnEMF меняют организацию молекул воды вокруг белка, что приводит к изменения гидрофобных взаимодействий.

Возвращая всё к гипотезе Гилберта Линга, nnEMF воздействуют на физические взаимодействия белковых структур, что приводит к тому, что белки могут удерживать меньше воды.

Проще говоря, неестественные излучения современного Мира делают людей обезвоженными. И изменяют взаимодействия белков, воды и ионов. Что мешает как образованию витамина D на солнце, так и образованию в почках активной формы 25(OH)D3 в почках.

Выводы:

  • При долгосрочном применении Витамин D3 не токсичен в дозировках до 30 000 МЕ в день;
  • Большинству людей придется принимать 9-10 тысяч МЕ в день, чтобы поднять концентрацию 25(OH)D3 в крови выше 50 нмоль/л;
  • Неестественные электромагнитные излучения современного Мира мешают синтезу витамина D;
  1. Vitamin D deficiency in Thailand
  2. Vitamin D: a critical and essential micronutrient for human health
  3. A systematic review of vitamin D status in populations worldwide
  4. The Big Vitamin D Mistake
  5. Vitamin D Is Not as Toxic as Was Once Thought: A Historical and an Up-to-Date Perspective
  6. Risk assessment for vitamin D
  7. Deprotonation of glutamic acid induced by weak magnetic field: an FTIR-ATR study
  8. Influence of magnetic fields on the hydration process of amino acids: vibrational spectroscopy study of L-phenylalanine and L-glutamine
  9. TIME #11 CAN YOU SUPPLEMENT SUNLIGHT?
Поделиться:

Теория триажа витаминов и минералов Брюса Эймса

Исторически триаж – это медицинская сортировка. Требующие незамедлительного медицинского вмешательства, требующие вмешательства в течение нескольких часов и так далее.

В 2006 году вышла статья за авторством Брюса Эймса, где он утверждал, что в случае недостатка микронутриентов организм приоритизирует функции необходимые для краткосрочного выживания за счет функций, недостаток которых скажется лишь в долгосрочной перспективе [1,2].  Выживание во время репродуктивного возраста за счет функций, необходимых после репродуктивного возраста.

Дефицит витаминов и минералов, недостаточно сильный, чтобы вызвать клинические симптомы, характерен и для современного Мира. Богатая калориями, но бедная микронутриентами еда встречается не только среди бедных. Вспомните хотя бы спортивный протеин.

Изначально свою идею Эймс демонстрировал на витамине D, магнии и ряде других микронутриентов с большим количеством важных функцией.

В 2009 он продемонстрировал теорию триажа на примере витамина К [3]. Дело в том, что у этого витамина есть одна приоритетная функция – коагуляция и антикоагуляция крови.

В своем исследовании он демонстрирует, что белки, связанные с коагуляцией и антикоагуляцией, первыми получают витамин К. И только затем он достается остеокальцину (кости, роль в гомеостазе глюкозы), Mgp-белкам (регуляция кальсификации сосудов);  Gas6 (кальсификация); Tgfbi (стабильность микротрубочек, комплексная роль при раке), периостину (развитие органов, костей, заживление ран, рак); Gla-протеины итд.

Таким образом, при субоптимальном уровне витамина К в диете с возрастом мы подвергаем себя риску:

— костных аномалий (хрупкость, потеря минерализации);
— кальсификации сосудов (атеросклероз итд);
— нечувствительность к инсулину;
— остеоартриту;
— хронической болезни почек;
— более высокой концентрации основных маркеров воспаления;
— раку.

В 2011 Эймс аналогичное «упражнение» проделал с селеном [4]. Селенозависимые белки делятся условно на эссенциальные и неэссенциальные. Во время недостатка селена концентрация вторых значительно падает, в то время как концентрация необходимых селенозависимых белков более устойчива к снижению количества витамина в диете. И мы видим, что недостаток неэссенциальных белков является риском некоторых видов рака, ССЗ, потери мышечной массы, потери минеральной плотности костей, потери умственных способностей, нечувствительности к инсулину.

Тексты самих исследований рекомендуются к прочтению людям, которые считают, что организм «сам синтезирует все нужное».

  1. http://www.bruceames.org/Triage.pdf
  2. https://www.ncbi.nlm.nih.gov/pubmed/17101959
  3. https://www.ncbi.nlm.nih.gov/pubmed/19692494
  4. https://www.ncbi.nlm.nih.gov/pubmed/21402715
Поделиться: