Бор рассматривается как важный элемент для здоровья костей. Статья ниже прекрасно суммирует другие важные функции этого микронутриента. Коротко:
1). Бор важен для остеогенеза и “здоровья костей”;
2). Бор ускоряет заживление ран за счет воздействия на ферменты фибробласт;
3). Улучшает биодоступность тестостерона, эстрогена и витамина D;
4). Бор усиливает абсорбцию магния;
5). Снижает уровень маркеров воспаления: С реактивного белка и ФНОальфа;
6). Увеличивает количество ферментов-антиоксидантов: супероксид дисмутазы, каталазы и глутатион пероксдазы;
7). Защищает от токсичности тяжелых металлов и вызванного пестицидами оксидативного стресса;
8). Улучшает электрическую активность мозга, когнитивные показатели и краткосрочную память у пожилых людей;
9). Положительно влияет на синтез и активность таких важных молекул как SAMe и NAD+;
10). Превентивный и терапевтический эффект в ряде видов рака: простаты, легких, шейки матки, множественной и неходжкинской лимфомы;
11). Может снизить нежелательные явления некоторых лекарств химиотерапии;
Сейчас вся “функциональная медицина” смотрит свободный тестостерон. Большая часть тестостерона связана мелками плазмы: ГСПГ, альбумином и транскортином. Тестостерон в связанном виде не может (из-за размера) проникать в мелкие капилляры.
Уже 2-й способ после крапивы увеличить свободный тестостерон, никак не влияя на общий.
Увеличение времени концентрации эстрадиола и Д3 тоже неплохо. Подрастет уровень D3 и эстрадиол тоже анаболический гормон. В частности он связан с нормальной секрецией гормона роста. При “вбитом” вниз референса эстрадиоле у вас могут быть проблемы с ГР и его производными.
Витамин D (а точнее D3) – не новая тема для этого журнала. Случай Д.С. («большие» по официальным меркам дозировки D3 и витамина А без признаков токсичности последнего) натолкнули на цепочку размышлений о синергии D3 с другими молекулами.
Витамин D и Витамин А
Исследование 1942-го года выявляло как витамин D и витамин А по отдельности и вместе влияют на простудные заболевания [1, 2]. Синергия была (но об этом чуть позже). Куда важнее выводы, проиллюстрированные рисунком ниже.
Витамин D в третьей группе был 300 000 UI в день, а витамин A 40 000 UI в день. Исследователи, конечно, не звери и дозировку до этих значений поднимали постепенно, начиная с 30 000 и 7 000 МЕ соответственно.
Вывод: витамин D и витамин A снижают потенциальную токсичность друг друга.
Что примечательно комбо D3 и А не только избавляло от потенциальной токсичности друг друга, но и продемонстрировало наилучший результат. Витамин D и витамин А продемонстрировали синергию в профилактике простудных заболеваний.
На текущий момент для нас не секрет, что и витамин D и витамин А модулируют иммунную систему [3, 4, 5]. Если мы внимательно прочитаем статью об эффектах этих витаминов на иммунную систему [3], то можем наметить следующие очаги синергии (простыми словами):
Укрепление иммунной системы кишечника (и не только кишечника);
Профилактика остеопороза и других «костных» заболеваний;
Здоровая кожа;
В полку употребляющих оба витамина в больших дозировках прибыло (в моем лице, конечно же).
Витамин D и сульфаты
Не секрет, что на солнце у нас образовывается сульфатная форма витамина D3 [6]. И что у этой формы есть свои особенности. В частности, сульфатная форма не приводит к росту концентрации кальция в плазме [7]. Возникают вопросы, что же тогда делает витамин D сульфат, если с точки зрения метаболизма кальция это довольно неэффективная молекула.
Ответ приходит с неожиданной стороны. Возьмём похожую молекулярную структуру, допустим «дедушку» D3, холестерин. Сульфат (да и далеко не только его) в клетке может быть добавлен к холестерину/витамину D3 (в последнем случае в теории) в аппарате Гольджи.
Холестерин-сульфат (прошу простить мне неверное упрощение) концентрируется в митохондриях и ядрах клеток. Fe-S кластеры – важный элемент передачи электрона в комплексе I, но я боюсь уйти в еще большие дебри, поэтому этот момент оставим. Если коротко, это хорошо для выработки АТФ.
Сульфатная группа делает холестерин амфифильным (имеющим и полярные и неполярные части). Что в 10 раз улучшает его способность проникать через мембраны [9].
Вот вам и объяснение, почему D3, получаемый на солнце, имеет другой эффект, чем наши с вами добавки.
И давайте предположим, что наш аппарат Гольджи может добавлять сульфатную группу к D3, то при прочих равных нас будет ограничиваться концентрация сульфатов в нашем организме.
Добавим при этом то, что часть бонусов D3 и Холестерин-сульфата очень схожи [10].
Сульфаты синтезируются в нашей коже на солнце из сульфидов. Холестерин-сульфат, гликозамингликаны (GAGs, еще одна большая тема) создаются в аппарате Гольджи. Но нам по-прежнему нужны сульфаты.
Мой выбор – потреблять их с серистой минеральной водой, тем самым частично компенсируя то, что d3 в капсулах не совсем тоже самое, что d3-сульфат, вырабатывающийся на Солнце. Заодно вы снабжаете свои клетки очень важным «строительным блоком», чьи бонусы не только созвучны витамину D3, но и выходят за его рамки.
Витамин D и витамин К
Самая предсказуемая часть заметки. Про это сказано уже достаточно в ряде источников. [11, 12] и многие другие. К2 (в первую очередь МК4) снижает токсичность D3. Также витамин D и витамин К усиливают действие друг друга.
Выводы
Витамин А и витамин К защищают от токсичности больших (на сотни тысяч) дозировок D3 и обладают с D3 рядом синергичных эффектов;
Витамин D в свою очередь снижает токсичность витамина А (которой проще добиться), а вместе они имеют значимых взаимодополняющих эффектов; особенно на иммунную систему (в том числе кишечника);
На солнце (УФ-спектр, привет кремам от Солнца) образовывается сульфатная форма D3, которая не влияет на метаболизм кальция, но за счет амфифильности (наличии гидрофильным и гидрофобных частей) гораздо «живее» выполняет все остальные функции D3.
D3 может быть синтезирован эндогенно из холестерина. Холестерин и гликопротеины получают сульфатную группу в аппарате Гольджи. И в целом снабжение сульфатами организм – очень хорошая идея: это частично компенсирует потребление несульфатного D3 и будет обладать рядом других бонусов. Мой выбор – серистая минеральная вода, но это могут быть и продукты;
Важность сульфатов я даже не поскреб. Но это отдельная и большая тема.
Витамин D3 образуется в коже при воздействии UVB-лучей. Употреблять витамин D3 в «больших» дозировках – «мода» последних лет 5. Тот редкий случай, когда привычка пришла из мира врачей, и ее сложно назвать плохой. Общепринято, что солнце лучше добавок витамина D3, но остаются вопросы:
Почему принимая витамин D3 по 5000 МЕ в день в течение нескольких лет, уровень 25(OH)D3 чаще всего бывает не только ниже 50 нмоль/л, но и ниже 30 нмоль/мл?
В каких количествах витамин D3 не является токсичным?
Почему есть дефицит витамина D в «южных» странах? И что с этим можно сделать?
Витамин D3 и токсичность
Витамин D3 начали активно применять в первой половине ХХ века, заметив его положительный эффект у пациентов с ревматоидным артритом. Дневные дозы D3 увеличивали до 200-300 тысяч МЕ, что приводило к заметным нежелательным явлениям. Затем дневная рекомендованная доза снизилась до 400 МЕ, что сейчас почти общепринято считается недостаточным. Правда, как не сложно догадаться, находится между этими значениями.
Текущие исследования говорят о том, что витамин D3 не токсичен при дозировках до 30 000 ME в день. При употреблении в течение нескольких месяцев [4, 5].
Оптимальная дозировка D3
По идее дозировка должна быть привязана к желаемым значениям концентрации 25(OH)D3 в крови. Традиционно многие хотят добиться результата в 50+ или 70+ нмоль/литр. Люди с генетическими дефектами рецепторов витамина D иногда вынуждены поднимать концентрацию витамина еще больше.
Большинство людей находятся между 20 и 30 нмоль/литр [5]. И с другой стороны довольно много случаев, когда долгосрочное употребление 3-5 тысяч МЕ в течение нескольких лет не позволяет людям преодолеть значение в 30 нмоль/литр.
8895 МЕ в день необходимы 97,5% людей, чтобы достичь концентрации 25(OH)D3 ≥ 50 нмоль/литр [4].
Естественно, что эти значения зависят от массы тела, географии проживания и других факторов. Но логично будет заменить общепринятые 2-5 тысячи МЕ на 5-10 тысяч МЕ. С учетом значений токсичности, нам еще есть куда отступать.
Дефицит D3 в солнечных странах [1, 2, 3]
Мы закончили с легкими вопросами, и остался последний elephant in the room. Почему при избытке солнца и экзогенной формы человек всё ещё может испытывать дефицит витамина D?
Белок может влиять на структурную организацию молекул воды вокруг себя и на свойства этой воды. Но на электронные и индукционные силы внутри белков можно воздействовать внешним излучением. Например, неестественным электромагнитным излучением (nnEMF, non-native Electromagnetic Frequencies), которых в современном мире в избытке. Возьмите хотя бы сотовые телефоны и Wi-Fi.
По ссылке [7, 8] вы можете увидеть, что это действительно так. Это лишь один из немногих примеров. Глутаминовая кислота и фенилаланил меня pH при воздействии магнитного поля. Они теряли протоны, кинетика конвертации глутаминовой кислоты в ГАМК увеличивалась до 50%.
Исследователи предположили, что nnEMF меняют организацию молекул воды вокруг белка, что приводит к изменения гидрофобных взаимодействий.
Возвращая всё к гипотезе Гилберта Линга, nnEMF воздействуют на физические взаимодействия белковых структур, что приводит к тому, что белки могут удерживать меньше воды.
Проще говоря, неестественные излучения современного Мира делают людей обезвоженными. И изменяют взаимодействия белков, воды и ионов. Что мешает как образованию витамина D на солнце, так и образованию в почках активной формы 25(OH)D3 в почках.
Выводы:
При долгосрочном применении Витамин D3 не токсичен в дозировках до 30 000 МЕ в день;
Большинству людей придется принимать 9-10 тысяч МЕ в день, чтобы поднять концентрацию 25(OH)D3 в крови выше 50 нмоль/л;
Неестественные электромагнитные излучения современного Мира мешают синтезу витамина D;
Исторически триаж – это медицинская сортировка. Требующие незамедлительного медицинского вмешательства, требующие вмешательства в течение нескольких часов и так далее.
В 2006 году вышла статья за авторством Брюса Эймса, где он утверждал, что в случае недостатка микронутриентов организм приоритизирует функции необходимые для краткосрочного выживания за счет функций, недостаток которых скажется лишь в долгосрочной перспективе [1,2]. Выживание во время репродуктивного возраста за счет функций, необходимых после репродуктивного возраста.
Дефицит витаминов и минералов, недостаточно сильный, чтобы вызвать клинические симптомы, характерен и для современного Мира. Богатая калориями, но бедная микронутриентами еда встречается не только среди бедных. Вспомните хотя бы спортивный протеин.
Изначально свою идею Эймс демонстрировал на витамине D, магнии и ряде других микронутриентов с большим количеством важных функцией.
В 2009 он продемонстрировал теорию триажа на примере витамина К [3]. Дело в том, что у этого витамина есть одна приоритетная функция – коагуляция и антикоагуляция крови.
В своем исследовании он демонстрирует, что белки, связанные с коагуляцией и антикоагуляцией, первыми получают витамин К. И только затем он достается остеокальцину (кости, роль в гомеостазе глюкозы), Mgp-белкам (регуляция кальсификации сосудов); Gas6 (кальсификация); Tgfbi (стабильность микротрубочек, комплексная роль при раке), периостину (развитие органов, костей, заживление ран, рак); Gla-протеины итд.
Таким образом, при субоптимальном уровне витамина К в диете с возрастом мы подвергаем себя риску:
– костных аномалий (хрупкость, потеря минерализации);
– кальсификации сосудов (атеросклероз итд);
– нечувствительность к инсулину;
– остеоартриту;
– хронической болезни почек;
– более высокой концентрации основных маркеров воспаления;
– раку.
В 2011 Эймс аналогичное «упражнение» проделал с селеном [4]. Селенозависимые белки делятся условно на эссенциальные и неэссенциальные. Во время недостатка селена концентрация вторых значительно падает, в то время как концентрация необходимых селенозависимых белков более устойчива к снижению количества витамина в диете. И мы видим, что недостаток неэссенциальных белков является риском некоторых видов рака, ССЗ, потери мышечной массы, потери минеральной плотности костей, потери умственных способностей, нечувствительности к инсулину.
Тексты самих исследований рекомендуются к прочтению людям, которые считают, что организм «сам синтезирует все нужное».